4/22/2009

National Aeronautics and Draft Space Administration ARC-04.01-xxx

LUNAR CRATER OBSERVATION AND SENSING SATELLITE (LCROSS) MEASUREMENT AND OPERATIONS PLAN

DRAFT E April 15, 2009

1 SCOPE

This document describes the measurement and operation specifications for the Lunar Crater Observation and Sensing Satellite (LCROSS). The measurement specifications and operations are derived form the science and measurement goals as defined in the mission science plan (ARC-04.01.SciMP.01.v-DRAFTD) and Project Level 4 Science/Payload requirements (XXX).

2 TABLE OF CONTENTS

3 MISSION AND MEASUREMENT OVERVIEW

The primary objective of the Lunar Crater Observation and Sensing Satellite (LCROSS) is to confirm the presence of water ice at the Moon's South Pole. This mission uses a 2000 kg kinetic impactor with more than 200 times the energy of the Lunar Prospector (LP) impact to excavate more than 250 metric tons of lunar regolith. The resulting ejecta cloud will be observed from a number of Lunar-orbital and Earth-based assets. The impact is achieved by steering the launch vehicle's spent Earth Departure Upper Stage (EDUS) into a permanently shadowed polar region (Figure 1). The EDUS is guided to its target by a Shepherding Spacecraft (S-S/C), which after release of the EDUS, flies toward the impact plume, sending real-time data and characterizing the morphology, evolution and composition of the plume with a suite of instruments. The S-S/C then becomes a 700kg impactor itself, to provide a second opportunity to study the nature of the Lunar Regolith. LCROSS provides a critical ground-truth for Lunar Prospector and LRO neutron and radar maps, making it possible to assess the total lunar water inventory, as well as provide significant insight into the processes that delivered the hydrogen to the lunar poles in the first place.

Multiple measurement techniques will be utilized by the LCROSS S-S/C and include some measurement goal overlap. By addressing each measurement goal with overlapping techniques a level of robustness against misinterpretation can be achieved and the mission susceptibility to false positive / negative results minimized. Ground or orbital based measurements other than those performed from the S-S/C are not described here, however, the LCROSS science team, specifically the Observation Coordinator, will work with these other platforms to maximize their utility in achieving the LCROSS science goals. It is anticipated that the LCROSS S-C/C measurements will provide the measurements with a greater resolution and sensitivity than any other known ground based, or earth or lunar orbiting platforms. Therefore, the S-S/C measurements should be of higher priority than those from other platforms. Each measurement technique is summarized below. <u>Flash Photometry</u> – At impact, the kinetic energy of the projectile is transferred to the kinetic (ejecta) and internal energy the target (compaction, heating). A portion of the internal energy may induce vapor resulting in vibrational and rotational emission lines that will evolve with space and time. The intensity and decay of the initial flash are related to the physical structure of the target (porosity, strength, volatile content, composition). Consequently, characterization of the initial flash provides a complementary tool to understand initial coupling and the nature of the target.

<u>Visible Spectroscopy</u> – Here visible spectroscopy refers to the measurement of spectra between 0.25 μ m and 0.8 μ m with a resolving power of $\lambda/d\lambda > 100$. The LCROSS S-S/C will observe the pre- and post-EDUS-impacted lunar regolith in and outside the targeted region at a spatial resolution and viewing angle unobtainable from Earth. The visible spectrometer shall record the sunlit plume evolution, and track the evolution of OH⁻ radicals from sunlight-dissociated water vapor molecules. The visible spectrometer will measure the OH⁻ (308 nm) and H2O+ (619 nm) transitions simultaneous which shall assess the water vapor production.

<u>NIR (Near Infrared) Spectroscopy</u> – Here NIR spectroscopy refers to the measurement of spectra between 1.0 μ m and 4.0 μ m with a resolving power of $\lambda/d\lambda > 100$. The LCROSS S-S/C will monitor spectral bands associated with water vapor, ice, and hydrated minerals covering the first overtones of the symmetric and asymmetric stretches of water; this band, relatively free from interferences, is more brightly illuminated by sunlight than the fundamentals near 3 microns, more than compensating the weaker absorption of the overtones. The regions near 1.4 and 1.9 microns, normally obscured by terrestrial atmospheric background in spectra from icy surfaces, will provide a sensitive indication of water vapor from ice or hydrates. The remainder of the spectral band will reveal the nature of ice crystals and mineral hydrates.

<u>NIR Imaging</u> – Imaging provides spatial resolution of the observed target. Two NIR imaging schemes are possible for LCROSS. The baseline includes two imagers, both with bandpass filters, one inside a water absorption line (e.g. at 1.6 μ m) and one outside the line (e.g. at 1.4 μ m), allowing the creation of water absorption band depth maps. The second scheme utilizes only a single broad band NIR imager to provide scene context for the NIR spectroscopy.

<u>MIR (Mid Infrared) Imaging</u> – For LCROSS, MIR imaging refers to imaging at thermal wavelengths between 6 and 15 μ m. The same two NIR imaging schemes apply to MIR imaging. Pre- and post- impact thermal images of the impact terrain will be obtained from MIR cameras on the S-S/C to characterize the surface material (rock vs. regolith), obtain the thermal evolution of the plume (which is dependent on the water content), and observe the ejecta blanket and freshly exposed regolith.

<u>Visible Imaging</u> – Visible imaging for LCROSS refers to imaging at wavelengths between 0.4 and 0.8 μ m with broad bandpass filtering for color.

Throughout the mission a verity of payload/measurement activities are planned prior to the final descent activities. These earlier activities monitor instrument health, perform instrument calibration, monitor for instrument contamination, or determine instrument alignment relative to each other and the spacecraft.

4 IMPACT CHARACTERIZATION

The LCROSS mission uses the impact of the Atlas V Centaur upper stage to excavate eject lunar surface material to where it can be observed by both the LCROSS S-S/C and other lunar orbiting, earth orbiting and ground based assets. It is necessary to model the expected results of the impact in order to plan and deploy the most effective measurement and operations plan. The next section summarizes the predicted characteristics of the impact as they relate to measurements and operation of the payload.

Figure 1 Montecarlo study of ejecta mass: Simulation varied the crater radius (R_{crat}), velocity function exponent (a), total mass (M_e), and ejecta flight angle (q). (See LCROSS technical note "LCROSS ejecta dynamics–Monte Carlo model (09/16/06)" for details)

Total ejecta mass at any altitude depends on a variety of parameters, including, but not limited to, impact angle, impactor density and ejecta flight angle. Figure 1 shows a Monte-Carlo study of ejecta mass at altitude for a variety of key impact parameter combinations. Uncertainties in low velocity impacts (velocities less than about 6 km s⁻¹), such as the LCROSS impact, results in broad profiles for the possible ejecta mass. The evolution of the ejecta mass and water is shown in Figure 2 assuming a total mass consistent with the "median model" shown on the previous slide and an assumed 1% (wt) water content in the regolith.

Figure 2 (left) The predicted ejecta curtain mass as a function of altitude and time after impact; (right) the predicted water ice and vapor mass (assuming a 1%[wt] water regolith content) as a function of altitude and time after impact.

The initial ejecta cloud will be cold (T<120 K). As the ejecta cloud reaches sunlight the small particles will sublime quickly (\sim 10 sec for a 40 micron particle) releasing water vapor. The eject water mass at a variety of altitudes is shown in Figure 2 (right panel), along with the estimation of the sublimed water vapor. The opacity of the cloud is estimated from the total mass and simplified cloud geometry. The ejecta cloud will approximately look like an expanding conical section (Figure 3).

Ejecta cloud optical depth modeled with a truncated conical section, the "upside-down lampshade" model. Conical section grows at a rate which follows the maximum cloud density contour.

Figure 3. Shown is the model for approximating the optical depth of the ejecta cloud. Top panels show images from a Vertical Gun experiment (cutesy Peter Schultz). Bottom panels show cartoons of the model used for calculating the ejecta concentration and optical depth (side view, left; top view right).

Figure 4 Ejecta curtain mass, radius (left panel), and optical depth and percent spectrometer aperture fill (right panel) are shown. A 30 µm particle radius was assumed.

Using the model for optical depth described above, combined with an estimate of the curtain radius (Figure 4, left), the ejecta and water ice optical depths (Figure 4, right) as a function of time after impact can be calculated (for the standard 1% water content model) at an altitude of 2 km above the crater floor. The percent area curve (Figure 4, right) shows the percent of the nadir UV/Visible and NIR spectrometer foreoptics aperture filled by curtain radiance (for a four minute follow time).

Figure 5 (a) Total calculated radiance as a function of wavelength for several times following impact. (b) Portion for the total calculated radiance as a function of wavelength attributed to the ejecta cloud.

To simulate the solar illumination of the ejecta curtain the well know and tested multistream scattering code (Discrete Ordinate Radiative Transfer or DISORT) is used. The ejecta dust and water ice optical depths presented in Figure 4 are used for the ejecta opacity. Linear mixing is used to estimate combined dust and water ice cloud optical properties. The total radiance from the sunlit ejecta cloud is shown in Figure 5 (upper panel). Plotted are the total radiance (ejecta cloud + lunar surface) at time impact plus, 10 (pink), 20 (blue), 30 (green), and 60 (red) seconds. The radiance attributed to the ejecta cloud only (derived be subtracting off the spectra from the lunar surface) at three times (10, 20 and 30 seconds) after impact is shown in Figure 5 (lower panel).

5 MISSION PERIODS

Payload operations are organized by measurement goals and/or requirements. Specific instrument operations are specified in sequences of commands/states. These operational sequences, their general goals and the period in the mission in which they are applied are summarized in Table 1.

Operational	Purpose	Mission Period	Data Rate Allocation
Sequence			(kbps)
Quick Look	Instrument health	Initial Checkout	29
Star Field	Star field alignment	Pre-Swing-by, Cruise	220
Swing-by	Calibration and	Lunar Swing-by	1000
	alignment		
Moon-Earth Look	Calibration and	Cruise	29/60
	alignment		
Centaur	Determination of	Centaur separation	220
Separation	Centaur drift		
	properties		
Pre-Impact	Instrument health,	~55 minutes prior to	1000
	calibration	centaur impact	
Impact-Flash	Monitor of impact	Centaur impact	1000
	flash		
Impact-Curtain	Monitor eject curtain	From 5 sec (TBR)	1000
		after Centaur impact	
		to 180 seconds after	
		Centaur impact	
Impact-Crater	Monitor centaur	180 sec after Centaur	1000
	impact site	impact to SSC impact	

Table 1 Payload Mission Sequences

<u>Quick Look</u> – The primary purpose of this mode/sequence of operation is to check each instrument, individually, for its health status. Each instrument is place in its nominal operating configuration, and in some cases alternate configurations. No instruments are operated simultaneously in this mode. The s mode is used in some cases as a part of other modes/sequences.

<u>Star Field</u> – This mode/sequence makes measurements of specific star fields to be used in determining camera alignment relative to the spacecraft attitude control system.

<u>Swing-by</u> – The purpose of Swing-by is to make both wavelength and radiometric calibration measurements as well as pointing/alignment measurements with all instruments during the lunar swing-by encounter. The sequence is broken into two segments: 1) nadir viewing for calibration and inter-camera alignment, and 2) lunar limb crossings for spectrometer to camera alignment.

<u>Moon-Earth Look</u> – During Cruise at least two opportunities are planned to observe the Moon and one opportunity to observe the Earth. These observations will act as monitors of instrument health and contamination, calibrations and system alignment tests. This mode/sequence utilizes the Quick Look mode/sequence with a limb-crossing activity appended onto the end.

<u>Centaur Separation</u> – The goal of this mode/sequence is to measure the dynamics of the separated Centaur.

<u>Pre-Impact</u> – The first ~55 minutes of the final hour of descent is spend in the Pre-Impact mode/sequence. The purpose of this mode is to routinely check on instrument health, provide contextual descent data and instrument calibrations.

Just prior to impact of the Centaur (about 30 seconds prior to impact) the Impact mode/sequence is entered. In the Impact mode/sequence specific instrument configurations are managed with three sub-sequences including Flash, Curtain and Crater.

<u>Impact-Flash</u> – In this mode/sequence all instruments are configured to optimize measurements of the Centaur impact flash. The key instruments in this mode are the NIR camera #2, the TLP and the spectrometers.

<u>Impact-Crater</u> – In this mode/sequence all instruments are configured to optimize measurements of the impact ejecta curtain. In this mode the emphasis is on measuring the spectra and evolution of the solar-illuminated ejecta cloud.

<u>Impact-Crater</u> – In this mode/sequence all instruments are configured to optimize measurements of the crater formed by the Centaur impact itself.

6 MEASUREMENT SPECIFICATIONS

Measurement specifications trace back to each of the measurement goals. Measurement specifications do not yet specify a technique but do identify a required accuracy and precision. Measurement requirements are captured in the Project Level 4 Requirements, document ****#****. Measurement specifications include (when applicable) instrument wavelength response, resolution, and sensitivity, and spatial resolution. These measurement specifications have been organized by measurement technique, as described the mission science plan (ARC-04.01.SciMP.01.v-DRAFTD), and mission period, and are summarized in Table 2. Ultimately it is the instrument specifications, captured as Level 4 requirements, which result in the particular instruments flown (defined in the Project Internal Payload Specification, document 05.02.PL-IDS.01.vDRAFT1) and, along with the impact characterization, define the specifics of the measurement and operational sequences.

Sequence	Specification	Flash Photometry	Visible Spectroscopy	NIR Spectroscopy	NIR Imaging	MIR Imaging
	Sensitivity	$<10 \ \mu W \ m^{-2}$	20%	20%	20 %	20 %
	dt	<0.01 sec	<1 sec	<1 sec	<0.1 sec	<0.1 sec
ash	dλ	None	<0.01 µm	<0.05 µm	<2 μm	<2 μm
Fla	λ-range	0.4-0.8 μm	0.28-0.65 μm	1.35-2.35 μm	1.35-2.35 μm	6-12 μm
	FOV	N/A	N/A	N/A	> 6°	> 10°
	dx	N/A	N/A	N/A	< 2000 m	< 2000 m
	Sensitivity		10%	0.2 %	10 %	10 %
_	dt		<5 sec	<10 sec	<60 sec	<1 sec
tain	dλ		<0.005 µm	<0.05 µm	<2 μm	<2 μm
Cur	λ-range		0.28-0.65 μm	1.35-2.35 μm	1.35-2.35 μm	6-12 μm
_	FOV		< 6°	< 6°	> 6°	> 10°
	dx		N/A	N/A	< 2000 m	< 2000 m
	Sensitivity				50 %	30 %
	dt				<0.1 sec	<0.05 sec
iter	dλ				<2 µm	<2 µm
Cra	λ-range				1.35-2.35 μm	6-12 μm
	FOV				< 6°	> 10°
	dx				< 500 m	< 500 m
	Sensitivity	$<10 \ \mu W \ m^{-2}$				30 %
n r	dt	<0.01 sec				<0.05 sec
tau ratio	dλ	None				<2 µm
Cen	λ-range	0.4-0.8 μm				6-12 μm
Ň	FOV	N/A				> 10°
	dx	N/A				< 5 m
	Sen. (Mag)				2	
ld	dt				>0.1 sec	
Fie	dλ				N/A	
star	λ-range				0.9-1.7 μm	
	FOV				> 6°	
	dx				N/A	
-	Sensitivity	None	20%	20%	50 %	30 %
arth	dt	<0.02 sec	<1 sec	<1 sec	<0.1 sec	<0.05 sec
./E ook	dλ	None	0.005 µm	0.05 µm	<2 µm	<2 µm
000 L(λ-range	None	0.28-0.65 μm	1.35-2.35 μm	1.35-2.35 μm	6-12 μm
М	FOV	None	< 6°	< 6°	< 6°	> 10°
	dx	N/A	N/A	N/A	> 3 pixels	> 3 pixels
	Sensitivity	None	20%	20%	10 %	30 %
By	dt	<0.02 sec	<1 sec	<1 sec	<60 sec	<0.05 sec
l-gn	dλ	None	0.005 μm	0.05 μm	<2 μm	<2 μm
Świi	λ-range	0.4-0.8 μm	0.28-0.65 μm	1.35-2.35 μm	1.35-2.35 μm	6-12 μm
	FOV	N/A	< 6°	< 6°	> 6°	> 10°
	dx	N/A	N/A	N/A	N/A	N/A

Table 2. S	Sequence to	Measurement	<i>Specification</i>	Trace

7 SEQUENCE GUIDLINES

Presented in this section are the guidelines for developing the mission sequences. Each sequence guideline defines the primary sequence goals, requirements and instrument operational specifications.

Instrument Definition

The various instruments that make up the LCROSS payload are summarized in Table 3. Detailed specifications for each instrument can be found in the Project Internal Payload Specification, document (05.02.PL-IDS.01.vDRAFT1).

					5				>		>	Û
			Vater	e	Vapo	s	ed IIs	ies	ologi	al	bolo	e Siz
			al V	ter	ter	Jani	drat	get	rph	olut	lear	ticl
Science Instrument	Qty.	Vendor	Lot	Ma	Ma	ő	Ϋ́́	Pro	βC	ЧЦ	Mir	Par
		Ecliptic										
Visible Camera	1	Enterprises										
		Goodrich										
Near Infrared		Sensors										
Cameras	2	Unlimited										
		Thermoteknix										
Mid-Infrared		Ltd.; Indigo										
Cameras	2	FLIR Sys.										
Visible												
Spectrometer	1	Ocean Optics										
Near Infrared												
Spectromters	2	Polychromix										
Total Luminance												
Photometer	1	NASA/ARC										
		Ecliptic	Data &	Data &	Data &	Data &	Data &	Data &				
Data Handling Unit	1	Enterprises	H/K	H/K	H/K	H/K	H/K	H/K	H/K	H/K	H/K	H/K
		Aurora Design										
Fore-optics	3	& Tech.										
Flight Fiber Optics	3	FiberGuide										
Flight Electrical &			Data &	Data &	Data &	Data &	Data &	Data &				
Thermal Harnesses	1	NASA/ARC	H/K	H/K	H/K	H/K	H/K	H/K	H/K	H/K	H/K	H/K
Telescope Aperture												
Door Assembly	1	NASA/ARC	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Payload												
Observation Deck	1	NASA/ARC										
Payload R6 Panel	1	NGST	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Integrated Payload	1	LCROSS										

Table 3. LCROSS Instrument Summary

KEY:

Direct/Strong; Very direct measure with little modeling / assumption; highly sensitive Indirect/Strong; Indirect measure with the goal removed by several steps; highly sensitive Indirect/Weak; Indirect measure with the goal removed by several steps; moderately sensitive

The guidelines for developing the payload operational sequences are listed below. Each sequence is described in detail.

Review Status

The status of the Flight DHU Sequence review is summarized here (K. Ennico 2009-03-09):

Sequence	Last Reviewed
Quicklook-29k	2009-02-19
Starfield-29k	2009-03-06
Starfield-58k	2009-03-06
Swingby-1000k	2009-02-19
Swingby-220k	2009-02-19
Earthmoon-60k	2008-03-09
Earhtmoon-29k	2008-03-09
Separation-220k	2009-03-06
Separation-58k	To Review
Preimpact-impact-	2009-03-09
1000k	
Preimpact-impact-220k	2009-03-09
Fault-1000k	2009-03-09, Need input

Information:

Test Period	Dates	Comments
Functional	2008-03-11	First time connected to S/C.
(Funct.)	2008-03-12	Only time most contingencies were tested on the S/C.
	2008-03-19	Note that the S/C Avionics had older FSW.
TT6	2008-03-18	Thread Test 6 with DSN Van.
CPT	2008-04-11	Payload Comprehensive Performance Test (CPT) that was defined as
		Quicklook-29k, PreImpact-Impact-1000k, and some DHU load tests, to be
		the baseline tests compared during the rest of the S/C testing.
Lid-I	2008-05-13	Post-Acoustic, Pre-TVAC baseline (atm. pressure, room temperature)
	2008-05-14	
TVAC	2008-06-01	Testing during TVAC (instruments at temperature and under vacuum)
	2008-06-06	
	2008-06-07	
Lid-II	2008-06-11	Post-TVAC baseline (atm. pressure, room temperature)
Post-NSP	2008-09-25	Repeat of CPT testing but after repair to NSP1 and NSP2 optical modules
Repair	2008-09-26	
Post	2008-12-10	Repeat of CPT testing but after misc. work and new FSW loads to avionics
Capacitor		
E2E	2009-02-26	End2End test of final proposed Flight Sequences for launch load. Post-
	2009-02-27	shipment to KSC aliveness testing.

7.1 QUICK LOOK

Primary Goals:

- 1. Take images/spectra from each instrument separately to determine functionality
- 2. Provide for commanding mode change for each instrument as appropriate

Requirements:

- 1. Must fit within in the specified downlink rate (29 kps)
- 2. Must isolate each instrument when powered
- 3. Require sufficient number of images/spectra from each instrument to ascertain contamination effects on performance

Instruments and Specifications:

<none>

Rate/Spec Summary:

<none>

Channel	Specified	Commanded	Observed	Deviations
[a]	1	(CPT)	Rates/# Files	from Spec
			(CPT)	
VIS	<none></none>	$R_{ate=0}$ 12Hz dur=120s	0.11Hz	<none></none>
V15	<11011C>	Total Powered Time: 120s	Total: 11 imagas	<nonc></nonc>
NIR 1	<none></none>	Rate=0.3Hz Gain=1x	0.28Hz	<none></none>
INIKI	<11011C>	\bullet ODP 6 ENH: OFF ACC: OFF dur=20 s	10 @ setup [b]	<11011C>
		• OIR 0, ENH: OFF, ACC:OFF, $dur=30$	10 @ OPR 6	
		• OPR 9, ENH. OFF, AGC.OFF, dui=30s	9 @ OPR 9	
		• OPR 15, ENH: OFF, AGC:OFF, dur=30s	9 @ OPR 15	
		• Lest Mode, dur=30s	9 @ TestPat	
		Total Powered Time: 120s	Total. 46 images	
NIR2	<none></none>	Rate=0.3Hz Gain=1x	0.3Hz	<none></none>
INIK2	<11011C>	\bullet ODP 6 ENH: OFF ACC: OFF dur=20 s	10 @ setup [b]	<11011C>
		• OFR 0, ENH. OFF, ACC.OFF, dui=30 s	10 @ Setup [0] 10 @ OPR 6	
		• OPR 9, ENH: OFF, AGC:OFF, duf=30s		
		• OPR 15, ENH: OFF, AGC:OFF, dur=30s	9 @ OPR 15	
		• Test Mode, dur=30s	9 @ OTK 15 0 @ TestPat	
		Total Powered Time: 120s	9 W Testral	
MID 1	<pre>/nono></pre>	Poto-0.07 Hz	1 otal. 40 mages	<pre>/nono></pre>
MIKI		Alle-0.07 HZ	5 @ High Coin	
			J @ Low Coin	
		• Lo Gain, dur=60s	4 @ Low Galli 4 @ TestDet	
		• Test Mode, dur=60s	4 @ TestPat	
		Total Powered Time: 180s	Total: 15 Images	
MIR2	<none></none>	Rate=0.07 Hz	0.07Hz	<none></none>
		• High Gain, dur=60s	5 @ High Gain	
		• Lo Gain, dur=60s	4 @ Low Gain	
		• Test Mode, dur=60s	4 @ TestPat	
		Total Powered Time: 180s	Total: 13 images	
NSP1	<none></none>	Rate=72 Hz	72.2Hz, 30s	<none></none>
		• (IF), dur=30s	2168 @ IF[c]	
		Rate=166 Hz	145 Hz, 5s	
		• (DM), dur=5s	726 @ DM[c]	
		Rate=1.7 Hz	1.7Hz, 120s	
		• (HS), dur=120s	203 @ HS	
		Total Powered Time: 155s	Total: 203 HS	
NSP2	<none></none>	Rate=72 Hz	72.1Hz, 10s	<none></none>
		• (IF), dur=10s	722 @ IF[c]	
		Rate=166 Hz	135.4Hz, 5s	
		• (DM), dur=5s	676 @ DM[c]	
		Rate=1.7 Hz	1.7Hz, 59.4s	
		• (HS), dur=60s	102 @ HS	
		Total Powered Time: 75s	Total: 102 HS	
VSP	<none></none>	Rate=0.2 Hz	0.2 Hz	<none></none>
		• int=0.1, 0.5, 2.5 sec, dur=60s	12 @ bracket	
		Rate=1.4Hz	1.36 Hz	
		• int=0.4s, dur=30s	40 @ single	
		Two 4s exposures	2 @ 4s snap	
		Rate=0.2Hz	0.19 Hz	
		• int=0.1, 0.5, 2.5 sec. dur=30s	5 @ bracket	
		Total Powered Time: 128s	Total: 93 spectra	
TLP	<none></none>	Off	Off	(1)

Notes:

[a] Each instrument is powered on/off sequentially in the order: VIS, NIR1, NIR2, VSP, MIR1, MIR2, NSP1 and NSP2. The TLP is **not** powered in this sequence. This pattern of instrument activation is used as an instrument checkout.

[b] NIR1/NIR2 undergo a specific set-up that fluctuates between a low and high base offset. Some of these images appear "saturated" although it is not dependent on light levels.

[c] Total numbers of IF and DM spectra from the NSP1/NSP2 do vary from run to run. The number shown here is from an actual run during CPT (4/2008) or later testing at NGST with the spacecraft.

Notes (Deviations from Specification):

(1) The TLP is not powered in this operation therefore it's functionality is not checked.

68	ellionde : Q U ICANDOO K 29 Salande Saldiga en loc	Mipde : N IR.1	72 73	3	lock: NIR2	75 3	Bode: VSP7 7	g Sta Start	art VSP t VSP E	Gispos I re 80	81 B	32	Mode: Ngrg2	84	85	Mode 865P1	87	Billiode: NSB9	Exite UKLOOK 291	92
CLK		1							- 1											+
VIS																				
NIR1																				
NIR2				"			1													
MIR1												1								
MIR2																				
NSP1																				
NSP2																				
VSP																				
TLP																				
				-	L			Ŀ.,	14					1111	11					-

Quicklook-29k Observational Pattern: Last Updated: 2008-04-28

Tick marks on each row represent images or spectra returned by the instrument named at the left (the text label appears below the line containing its tick marks). For the cameras, a tick mark represents a single image. For the VSP, ticks represent either individual spectra or groups of three spectra (bracket mode). The VSP tick marks the receipt time of packet of the spectrum/spectra just taken (either single or triplet). Regarding the latter, a triplet spectra contains spectra take in this time order: (1) itime (base), 7ms delay, (2) itime/factor (short exposure), 7 ms delay, (3) itime*factor (long exposure) order then transfer time before time stamping packet. The yellow sections of the NSP1 and NSP2 lines represent flash mode (low resolution) spectra, and the red sections represent diagnostic mode packets. The black sections of those lines represent individual full-resolution spectra (Hadamard mode) and are individual ticks drawn too closely to distinguish at this scale. The TLP was not active here. The bottom row represents downlink capacity and usage. The top row is a timeline marked in minutes; this pattern is plotted using the DHU's internal clock to generate the timeline rather than having it start with 0 at the beginning of the command sequence.

Quicklook-29k Sequence Milestones: Last Updated: 2009-02-19

Start Simulation length: full-length slot: 4 filename: quicklook-29k.cmd

msec	NVM	Msg		min:sec
00000000) 4	ECHO:	Start Sequence	(000:00.00)
00000050) 4	ECHO:	TLM_HSS_RATE :rate 29000	(000:00.05)
00000100) 4	ECHO:	Mode: QUICKLOOK 29	(000:00.10)
00000150) 4	ECHO:	Mode: VIS	(000:00.15)
00121000) 4	ECHO:	Mode: NIR1	(002:01.00)
00273850) 4	ECHO:	Mode: NIR2	(004:33.85)
00426700) 4	ECHO:	Mode: VSP	(007:06.70)
00546500) 4	ECHO:	Start VSP Exposure	(009:06.50)
00556600) 4	ECHO:	Start VSP Exposure	(009:16.60)
00610050) 4	ECHO:	Mode: MIR1	(010:10.05)
00799750) 4	ECHO:	Mode: MIR2	(013:19.75)
00989450) 4	ECHO:	Mode: NSP1	(016:29.45)
01144800) 4	ECHO:	Mode: NSP2	(019:04.80)
01220150) 4	ECHO:	Exit QUICKLOOK 29	(020:20.15)

The sequence milestones listing shows messages printed by the QUICKLOOK command sequence when run on the DHU. The listing is intended for use when monitoring sequence execution.

Slot:	4		
Filename:	quickl	ook-29k.d	cmd
Elapsed Time:	122025	0 msec (2	20.34 min)
		PDS Data	
Instrument	Counts	Volume	Kbytes
VIS:	15	15000	
MIR1:	13	780	
MIR2:	13	780	
NIR1:	47	94000	
NIR2:	47	94000	
NSP1 IF:	2172	217	
NSP1 HS:	205	2460	
NSP1 DM:	100	10	
NSP2 IF:	728	73	
NSP2 HS:	103	1236	
NSP2 DM:	100	10	
VSP BM:	18	1620	
VSP SM:	75	2250	
TLP:	0	0	

Quicklook-29k Observation Statistics: Last Updated: 2009-02-19

263 Mbytes

The observation statistics show how many of each type of observation will be generated by each command sequence. The volume column is an early estimate of the contribution of this sequence to the PDS archive.

Quicklook Contingency:

There is no contingency rate case for Quicklook.

7.1 STAR FIELD SEQUENCE GUIDELINES

Primary Goals:

- 1. Take images of star fields for use in pointing calibration
- 2. Activate the TADA

Requirements:

- 1. Multiple images of star field with visible and NIR cameras
- 2. Deploy TADA
- 3. Take measurements with spectrometers before and after TADA deployment
- 4. Telemetry rate < 220 kbps

Instruments and Specifications:

- 1. Visible camera with periods of maximum rate (to minimize SC blur)
- 2. NIR camera following visible camera barrage, with integration times > 0.1 sec (TBR)
- 3. VSP and NSP sampled before and after TADA Activation at "nominal" rates/modes

Rate/Spec Summary:

Vis cam: 5 Hz NIR1 cam: off NIR2 cam: 0.5 Hz, integration = 0.1 sec MIR1 cam: off MIR2 cam: off TLP: off VSP: Bracket Mode with tau = 0.5 sec, factor = 5 NSP1: No Decimation, Hadamard mode

Last Op	ualed. 2009-0	12-19		
	Specified	Commanded	Observed	Deviations
		(CPT)	(TVAC)	from Spec
VIS	Rate=5 Hz	Off	Off	(1)
NIR1	Off	Off	Off	<none></none>
NIR2	Rate=0.5 Hz	Rate=0.5 Hz	0.5 Hz	(2)
	Int=0.1 s	Gain=1x	112 Setup @ OPR15	
		OPR 15, ENH: OFF, AGC:OFF, dur=10 min	303 @ OPR15/ENHOFF	
		OPR 15, ENH: ON, AGC:OFF, dur=10 min OPR 15 ENH: OFF AGC:OFF dur=20 min	128 @ OPR15/ENHON	
		Note: $OPR15$ has int=16.24ms	<none $>$ (2) @ OPR15/ENHOFF	
			Total: 543 images (3)	
MIR1	Off	Off	Off	<none></none>
MIR2	Off	Rate=0.5 Hz	0.5 Hz	<none></none>
		High Gain	High Gain	
			Total: 598 images (3)	
NSP1	Rate=1.7 Hz	Off	Off	(4)
	Hadamard			
	Mode			
NSP2	Not	Off	Off	<none></none>
	specified			
VSP	Bracket	Single Mode	0.13 Hz	<none></none>
	Mode	Rate = 0.125 Hz	Single Mode	
	Rate= <not< td=""><td>Int = 5 seconds</td><td>Int = 5000 msec</td><td></td></not<>	Int = 5 seconds	Int = 5000 msec	
	specified>		Total: 147 spectra	
	int=0.1,0.5,2			
	.5 s			
TLP	Off	Off	Off	<none></none>
TADA	Operated	To be operated via ground	Not Operated	(5)
		command		

Comparison of Specification to the STARFIELD Sequence:

Notes (Deviations from Specification):

- (1) VIS is not expected to be sensitive enough for this measurement and was removed from the sequence
- (2) NIR2 (unfiltered) is the best candidate large-FOV imager for starfield.
- (3) During CPT/TVAC testing however, a shortened version of starfield was used which is not representative of the actual flight sequence. The simulation suggests there will be 1620 and 1588 total NIR2 and MIR2 images, respectively.
- (4) It is not expected that NSP1 will have sufficient sensitivity to detect stars in the proposed starfields.
- (5) The syntax of the discrete commands to the DHU for TADA was tested during space vehicle thermal vacuum testing. In flight, TADA operations are to be performed with a ground command containing those same discrete commands through a STOL proc.

Starfield-220k Observational pattern: Last Updated: 2008-04-28

	Mode:S	WRINELDISED Tencen MIR2	Activate TADA		NIR2 Exhancement ON
CLK					
VIS			ne		
NIR1			A		В
NIR2					
MIR1					
MIR2					
NSP1					
NSP2					
VSP				******	
TLP					

- (A) The vertical line to the left of (A) indicates when the TADA will be commanded open via the ground. (Data: dhu_tvac_cpt2_starfield_220k-2008-06-06-PODCover-LiteTest)
- (B) Marks approx. 17.4 minutes (1045s) since sequence start. Actual flight sequence is 53.5 minutes. Therefore this image is missing the NIR2 Enhancement OFF with continued MIR2 and VSP for another ~36 minutes of data.

Starfield-220k Sequence Milestones: Last Updated: 2009-02-19

Start Simulation length: full-length slot: 5 filename: starfield-220k.cmd

msec	NVM	Msg		min:sec
00000000) 5	ECHO:	Start Sequence	(000:00.00)
0000050) 5	ECHO:	TLM_HSS_RATE :rate 220000	(000:00.05)
0000100) 5	ECHO:	Mode: STARFIELD-220	(000:00.10)
00033600) 5	ECHO:	Turn on MIR2	(000:33.60)
00037950) 5	ECHO:	Turn on VSP	(000:37.95)
00170300) 5	ECHO:	Activate TADA	(002:50.30)
00832550) 5	ECHO:	NIR2 Enhancement ON	(013:52.55)
01432700) 5	ECHO:	NIR2 Enhancement OFF	(023:52.70)
03210850	D 5	ECHO:	Expected Sequence End	(053:30.85)

Starfield-220k Observation Statistics: Last Updated: 2009-02-19

Slot:	5		
Filename:	starfi	eld-220k.	. cmd
Elapsed Time:	321095	0 msec (5	53.52 min)
		PDS Data	
Instrument (Counts	Volume	Kbytes
VIS:	0	0	
MIR1:	0	0	
MIR2:	1588	95280	
NIR1:	0	0	
NIR2:	1620	3240000	
NSP1 IF:	0	0	
NSP1 HS:	0	0	
NSP1 DM:	0	0	
NSP2 IF:	0	0	

NSP2	HS:	0	0
NSP2	DM:	0	0
VSP	BM:	0	0
VSP	SM:	396	11880
TLP:		0	0

6428 Mbytes

Starfield Contingency:

Nominal starfield is starfield-220k. Rate contingency is starfield-58k. Comparison between the baseline and contingency is summarized below. Only the rates for NIR2 and MIR2 were altered. This was not actually run on the S/C during March 2008 functionals. It was designed on the simulator with sufficient instrument complement to predict correct loads.

	Baseline starfield-220k	Contingency starfield-58k
VIS	Off	Off
NIR1	Off	Off
NIR2	Rate=0.5 Hz	Rate=0.2 Hz
	Gain=1x	Gain=1x
	OPR 15, ENH: OFF, AGC:OFF, dur=10 min	OPR 15, ENH: OFF, AGC:OFF, dur=10 min
	OPR 15, ENH: ON, AGC:OFF, dur=10 min	OPR 15, ENH: ON, AGC:OFF, dur=10 min
	OPR 15, ENH: OFF, AGC:OFF, dur=20 min	OPR 15, ENH: OFF, AGC:OFF, dur=20 min
	Note: OPR15 has int=16.24ms	Note: OPR15 has int=16.24ms
MIR1	Off	Off
MIR2	Rate=0.5 Hz	Rate=0.2 Hz
	High Gain	High Gain
NSP1	Off	Off
NSP2	Off	Off
VSP	Single Mode	Single Mode
	Rate = 0.125 Hz	Rate = 0.125 Hz
	Int = 5 seconds	Int = 5 seconds
TLP	Off	Off
TADA	To be operated via ground command	To be operated via ground command

Contingency Starfield-58k Sequence Milestones: Last Updated: 2009-02-19

Start Simulation
length: full-length
slot: 6
filename: starfield-58k.cmd

msec	NVM	Msg		min:sec
00000000) 6	ECHO:	Start Sequence	(000:00.00)
00000050) 6	ECHO:	TLM_HSS_RATE :rate 58000	(000:00.05)
00000100) 6	ECHO:	Mode: STARFIELD-58	(000:00.10)
00033600) 6	ECHO:	Turn on MIR2	(000:33.60)
00037950) 6	ECHO:	Turn on VSP	(000:37.95)
00170300) 6	ECHO:	Activate TADA	(002:50.30)
00832550) 6	ECHO:	NIR2 Enhancement ON	(013:52.55)
01432700) 6	ECHO:	NIR2 Enhancement OFF	(023:52.70)
03210850	6	ECHO:	Expected Sequence End	(053:30.85)

Contingency Starfield-58k Observation Statistics: Last Updated: 2009-02-19

 Slot:
 6

 Filename:
 starfield-58k.cmd

 Elapsed Time:
 3210950 msec (53.52 min)

 PDS Data

 Instrument
 Counts

 VIS:
 0

 0
 0

 MIR1:
 0

 0
 0

 MIR2:
 636

 648
 1296000

 NSP1
 IF:

 0
 0

 NSP1
 0

 NSP1
 0

 0
 0

 NSP1
 0

 0
 0

 NSP1
 0

 0
 0

 NSP2
 0

 0
 0

 NSP2
 0

 0
 0

 NSP2
 0

 0
 0

 VSP
 BM:

 0
 0

 VSP
 SM:

 396
 11880

 TLP:
 0

2580 Mbytes

7.2 SWING-BY / CALIBRATION SEQUENCE GUIDELINES

Primary Goals:

- 1. Radiometric and spectral calibration all instruments
- 2. Determine instrument pointing relative to SC reference frame (Star Tracker)
- 3. Demonstrate SC "Science Mode" pointing control
- 4. Demonstrate "Final Hour" operation of all instruments.

Requirements:

- 1. Observation of lunar near side
- 2. Observations from the dark-side of the lunar terminator to the illuminated limb, with at least two "stares" with payload pointing drift rates of < 0.3 deg/sec
- 3. Crossing observations of the E-W and S-N lunar limb with payload pointing crossing rates of < 0.6 deg/sec (expected rate = 0.5 deg/sec)

Instruments and Specifications:

- 1. During nadir/ground viewing run instruments in curtain mode
- 2. During limb-crossing viewing:
 - a. NSP1: Flash mode with no decimation
 - b. VSP: Bracket Mode with tau = 0.2 sec, factor = 2
 - c. Vis Cam: Sample Rate to constrain pixel crossing to < 0.1 deg = drift rate/0.1 = 5 Hz.

Rate/Spec Summary:

Nadir/Ground: Per "Curtain" Mode

Limb-Crossings

Vis cam: 5 Hz NIR1 cam: off NIR2 cam: off MIR1 cam: 0.5 Hz, High Gain MIR2 cam: 0.5 Hz, High Gain TLP: 1000 Hz VSP: Bracket Mode with tau = 0.2 sec, factor = 2 NSP1: No Decimation, Flash mode NSP2: No Decimation, Flash mode

	Specified	Commanded (CPT)	Observed (CPT)	Deviations from Spec
VIS	Rate=1 Hz	Rate=0.816 Hz	0.79 Hz	(1)
NIR1	Rate=3 Hz	Rate=0.408 Hz	0.39 Hz	(1)
	OPR 8 and OPR	AGC:ON		(2)
	15	ENH:ENABLE OFF		
NIR2	Rate=3 Hz	Rate=0.408 Hz	0.40 Hz	(1)
	OPR 8 and OPR	AGC:ON		(2)
	15	ENH:ENABLE OFF		
MIR1	Rate=3 Hz	Rate=3 Hz	3.00 Hz	
	High Gain	High Gain		
MIR2	Rate=3 Hz	Rate=3 Hz	2.99 Hz	
	High Gain	High Gain		
NSP1	Rate=1.7 Hz	Rate=1.7 Hz	1.69 Hz	
	Hadamard Mode	Hadamard Mode		
NSP2	Rate=1.7 Hz	Rate=1.7 Hz	1.70 Hz	
	Hadamard Mode	Hadamard Mode		
VSP	Rate= <none></none>	Rate=0.5 Hz	0.50 Hz	(3)
	int=0.1, 0.2, 0.4	int=0.1, 0.2, 0.4 sec		
	sec			
TLP	Rate=1000 Hz	Rate=0 Hz	Off	(4)

Comparison of Specification to the SWINGBY-GROUND Sequence: Last Updated: 2008-04-28

Comparison of Specification to the SWINGBY-LIMB Sequence: Last Undated: 2008-04-28

Last Op	ualeu. 2008-04-28			
	Specified	Commanded	Observed	Deviations from
		(CPT)	(CPT)	Spec
VIS	Rate=5 Hz	Rate=3.0 Hz	3.0 Hz	(5)
NIR1	Rate=0 Hz	2 context images	2 context images	(6)
		AGC:ON	per position	
		ENH:ENABLE OFF		
NIR2	Rate=0 Hz	2 context images	2 context images	(6)
		AGC:ON	per position	
		ENH:ENABLE OFF		
MIR1	Rate=0.5 Hz	2 context images	2 context images	(6)
	High Gain	High Gain	per position	
MIR2	Rate=0.5 Hz	2 context images	2 context images	(6)
	High Gain	High Gain	per position	
NSP1	Rate=72 Hz	Rate=72 Hz	Flash mode	
	Flash Mode	Flash Mode		
NSP2	Rate=1.7 Hz	Disabled	Disabled	(7)
	Hadamard Mode			
VSP	Rate= <none></none>	Rate=0.5 Hz	0.49 Hz	(8)
	int=0.1, 0.2, 0.4	int=0.1, 0.2, 0.4 sec	int=0.1, 0.2, 0.4 sec	
	sec			
TLP	Rate=1000 Hz	Off	Off	(4)

Notes (Deviations from Specification):

- (1) The DHU cannot continuously take images with more than one camera without allocating a command sequence to control the camera. Command sequences are a limited resource and are shared between science modes. The command sequence used here to control VIS, NIR1 and NIR2 is also used during the impact sequence, and the rates are determined by bandwidth available at that time.
- (2) Image radiance in this situation will vary and has high uncertainty. The auto-gain mechanism on the NIR cameras was selected and the DHU periodically collects reports from the cameras to log the gain setting the cameras have adopted as a function of time.
- (3) The VSP rate was not clearly specified in the requirements. For swingby-ground, the rate is higher (faster) than curtain mode due to shorter exposure times. Swingby-ground-1000k and (preimpact-impact-1000k) curtain have VSP bracket rates at 0.5 Hz and 0.2 Hz, respectively.
- (4) The TLP will not be powered on during the swingby to reduce the number of power cycles it experiences.
- (5) 5 Hz did not fit within the downlink budget
- (6) NIR1, NIR2, MIR1 and MIR2 were changed to provide context images at the end of each limb crossing.
- (7) 'Disabled' means the instrument is powered but its telemetry packets are suppressed.
- (8) The VSP rate was unspecified in the requirements.

3 420)	5	DI: SMINGPT 1000 ANTOGAIN 424	425	426	427	428	Stop	Cher Sterry 50	LIND 431 (limb b	12_Skw4193	5_m #34.	ew 10,4352	436	437	438	139-	Slew 4140	Lind	41 Sew (Imb	¥2-s	slewyilling	Eid M Eid Im
CLK		ľI				'	'						' '				1						,	_ '
VIS		Π																						
NIR1																				.				
NIR2																		.						
MIR1																				 ''				
MIR2									"	C									1	_				
NSP1																								
NSP2		T																						
VSP			***************************************	••••••											*******							*****		
TLP		Π	1	1					D															

Swingby-1000k Observational Pattern: Last Updated: 2008-04-28

- (A) The ground phase is shortened in this run.
- (B) The red line to the left of B represents the transition between the swingby ground and limb phases.
- (C) The columns of double hash marks represent the context images taken with NIR1, NIR2, MIR1 and MIR2

Swingby-1000k Sequence Milestones: Last Updated: 2009-02-19

Start Sim	ulation								
length: full-length									
slot:	slot: 9								
filename:	swingby-1000k-ground.cmd								
msec N	VM Msg	min:sec							
00000000	9 ECHO: Start Sequence	(000:00.00)							
00000050	9 ECHO: TLM HSS RATE :rate 1000000	(000:00.05)							
00000100	9 ECHO: Mode: SWINGBY 1000 AUTOGAIN	(000:00.10)							

00003050	9	ECHO:	Mode: CURTAIN 1000 AUTOGAIN	(000:03.05)
01840050	8	ECHO:	Stop Other Sequences	(030:40.05)
01840150	8	ECHO:	Mode: Limb1_out	(030:40.15)
01870150	8	ECHO:	Limb_Slew (limb 1)	(031:10.15)
01900150	8	ECHO:	Limb1_in	(031:40.15)
01960150	8	ECHO:	Limb_Slew (limb 1)	(032:40.15)
01990150	8	ECHO:	Limb1_out	(033:10.15)
02050150	8	ECHO:	Limb_Slew (limb 1)	(034:10.15)
02080150	8	ECHO:	Limb1_in	(034:40.15)
02140150	8	ECHO:	5_minute_slew to limb 2	(035:40.15)
02440150	8	ECHO:	Limb1_out	(040:40.15)
02470150	8	ECHO:	Limb_Slew (limb 2)	(041:10.15)
02500150	8	ECHO:	Limb1_in	(041:40.15)
02560150	8	ECHO:	Limb_Slew (limb 2)	(042:40.15)
02590150	8	ECHO:	Limb1_out	(043:10.15)
02650150	8	ECHO:	Limb_Slew (limb 2)	(044:10.15)
02680150	8	ECHO:	Limb1_in	(044:40.15)
02740150	8	ECHO:	End limb 2	(045:40.15)
02740750	8	ECHO:	End LIMB 1000	(045:40.75)

Swingby-1000k Observation Statistics: Last Updated: 2009-02-19

Slot:		9		
Filenar	ne:	swingb	oy-1000k-	ground.cmd
Elapsed	d Time	: 274085	50 msec (45.68 min)
			PDS Data	,
T		0	IDD Data	
Instru	nent	Counts	volume	kbytes
VIS:		4293	4293000	
MIR1:		8232	493920	
MIR2		8223	493380	
NTR1	•	724	1448000	
NTD2		721	1449000	
NIKZ.	•	724	1440000	
NSPI	15:	65426	6543	
NSP1	HS:	3129	37548	
NSP1	DM:	0	0	
NSP2	IF:	0	0	
NSP2	HS:	3129	37548	
NSP2	• MC	0	0	
VCD	DII.	1360	122400	
VSP		1300	122400	
VSP	SM:	0	0	
TLP:		0	0	

40303 Mbytes

Swingby Contingency: Last Updated: 2009-02-19

Nominal swingby is swingy-1000k. Rate contingency is swingby-220k. Comparison between the baseline and contingency is summarized below.

	Baseline Swingby-ground-1000k	Contingency Swingby-ground-220k
VIS	Rate=0.816 Hz	Rate=0.119 Hz
NIR1	Rate=0.408 Hz	Rate=0.119 Hz
	AGC:ON; ENH:ENABLE OFF	
NIR2	Rate=0.408 Hz	Rate=0.119 Hz
	AGC:ON; ENH:ENABLE OFF	
MIR1	Rate=3 Hz; High Gain	Rate=0.2 Hz; High Gain
MIR2	Rate=3 Hz; High Gain	Rate=0.2 Hz; High Gain
NSP1	Rate=1.7 Hz; Hadamard Mode	Rate=1.7 Hz; Hadamard Mode
NSP2	Rate=1.7 Hz; Hadamard Mode	Rate=1.7 Hz; Hadamard Mode
VSP	Rate=0.5 Hz; int=0.1, 0.2, 0.4 sec	Rate=0.5 Hz; int=0.1, 0.2, 0.4 sec
TLP	Rate=0 Hz	Rate=0 Hz
	Baseline Swingby-limb-1000k	Contingency Swingby-limb-220k
VIS	Rate=3.0 Hz	Rate=0.5 Hz
NIR1	2 context images	2 context images
	AGC:ON; ENH:ENABLE OFF	AGC:ON; ENH:ENABLE OFF
NIR2	2 context images	2 context images
	AGC:ON; ENH:ENABLE OFF	AGC:ON; ENH:ENABLE OFF
MIR1	2 context images	2 context images
	High Gain	High Gain
MIR2	2 context images	2 context images
	High Gain	High Gain
NSP1	Rate=72 Hz	Rate=72 Hz
	Flash Mode	Flash Mode
NSP2	Disabled	Disabled
VSP	Rate=0.5 Hz	Disabled
	int=0.1, 0.2, 0.4 sec	
TLP	Off	Off

Swingby Contingency Sequence Milestones: Last Updated: 2009-02-19

```
Start Simulation
 length: full-length
 slot:
               6
 filename: swingby-220k-ground.cmd
msec NVM Msg
                                                                                             min:sec
 000000006 ECHO: Start Sequence(000:00.00)000000506 ECHO: TLM_HSS_RATE :rate 220000(000:00.05)000001006 ECHO: Mode: SWINGBY 220 AUTOGAIN(000:00.10)000030506 ECHO: Mode: CURTAIN 220 AUTOGAIN(000:03.05)018400505 ECHO: Stop Other Sequences(030:40.05)018401505 ECHO: Mode: Limb1_out(030:40.15)018701505 ECHO: Limb_Slew (limb 1)(031:10.15)019001505 ECHO: Limb1_in(031:40.15)
                                                                                             (032:40.15)
 01960150 5 ECHO: Limb Slew (limb 1)
 01990150 5 ECHO: Limb1 out
                                                                                               (033:10.15)
02050150 5 ECHO: Limb_Slew (limb 1)
02080150 5 ECHO: Limb1_in
                                                                                                (034:10.15)
                                                                                                (034:40.15)
```

5	ECHO:	5_minute_slew to limb 2	(035:40.15)
5	ECHO:	Limb1_out	(040:40.15)
5	ECHO:	Limb_Slew (limb 2)	(041:10.15)
5	ECHO:	Limb1_in	(041:40.15)
5	ECHO:	Limb_Slew (limb 2)	(042:40.15)
5	ECHO:	Limb1_out	(043:10.15)
5	ECHO:	Limb_Slew (limb 2)	(044:10.15)
5	ECHO:	Limb1_in	(044:40.15)
5	ECHO:	End limb 2	(045:40.15)
5	ECHO:	End LIMB 220	(045:40.75)
	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5 ECHO: 5 ECHO: 5 ECHO: 5 ECHO: 5 ECHO: 5 ECHO: 5 ECHO: 5 ECHO: 5 ECHO: 5 ECHO:	<pre>5 ECHO: 5_minute_slew to limb 2 5 ECHO: Limb1_out 5 ECHO: Limb_Slew (limb 2) 5 ECHO: Limb1_in 5 ECHO: Limb1_out 5 ECHO: Limb1_out 5 ECHO: Limb1_in 5 ECHO: Limb1_in 5 ECHO: End limb 2 5 ECHO: End LIMB 220</pre>

Swingby Contingency Observation Statistics: Last Updated: 2009-02-19

SIOT:		6					
Filenar	ne:	SI	wingb	y-22	0k-g	round	.cmd
Elapsed	d Tir	ne: 2'	74085	0 ms	ec (45.68	min)
				PDS .	Data		
Instrur	nent	Coi	unts	Vo	lume	Kbyt	es
VIS:			650	65	0000		
MIR1	:		560	3	3600		
MIR2	:		559	3	3540		
NIR1	:		227	45	4000		
NIR2	:		227	45	4000		
NSP1	IF:	65	5422		6542		
NSP1	HS:		3129	3	7548		
NSP1	DM:		0		0		
NSP2	IF:		0		0		
NSP2	HS:		3129	3	7548		
NSP2	DM:		0		0		
VSP	BM:		910	8	1900		
VSP	SM:		0		0		
TLP:			0		0		
					3960	Mbyte	es

7.3 MOON/EARTH LOOK SEQUENCE GUIDELINES

Assumptions:

- 1. SC drift rate during measurement = 0.3 deg/sec
- 2. SC in "science" pointing/control mode

Primary Goals:

- 1. Calibration of spectrometers
- 2. Instrument health check
- 3. Contamination check

Requirements / Measurements:

- 1. Observe the moon from a distance between 100,000 km (lunar angle $\sim 2 \text{ deg}$) and 200,000 km (lunar angle $\sim 1 \text{ deg}$).
- 2. Observe the moon with all instruments.
- 3. Telemetry rate < 220 kbps

Instruments and Specifications:

- 1. Visible camera running at rate sufficient to track lunar edge between images to 0.1 deg: for a SC drift rate of 0.3 deg/sec, this is \sim 3 Hz
- 2. NIR camera IFOV ~0.1 deg: thus NIR cam integration should be < 0.3 sec, sample rate about 1/3 that of the visible camera (ratio of IFOVs ~3)
- 3. VSP at "nominal" rate
- 4. NSP sampled in Hadamard mode

Rate/Spec Summary:

Vis cam: 3 Hz NIR1 cam: 1 Hz, integration ~0.08 sec (OPR 12) (TBR) NIR2 cam: 1 Hz, integration ~0.05 sec (OPR 8) (TBR) MIR1 cam: sample rate = 0.5 Hz MIR2 cam: sample rate = 0.5 Hz TLP: 1000 Hz VSP: Bracket Mode with tau = 0.5 sec, factor = 5 NSP1: No Decimation, Hadamard mode NSP2: No Decimation, Hadamard mode

Notes:

A single sequence has been prepared for both the earth looks and the moon looks (called EARTHMOON). Two versions of this sequence have been prepared to fit within 29K and 60K downlink budgets (EARTHMOON_29K and EARTHMOON_60K). Each EARTHMOON sequence combines an instrument health check (shortened quicklook) with instrument function and boresight calibration. The sequence (designed in March 2009) has three phases (1) shortened quicklook, (2) camera sleep (during a slew maneuver to bring the Earth/Moon into view, and (3) Alignment (a series of N-S then E-W operations with controlled stares at center, a pattern repeated 2x).

The boresight calibration is expected to involve sweeping the instrument boresight across the Earth or Moon in the pattern shown below. The solid circle represents the Earth (blue) or Moon (orange) and the dashed circle represents the NSP1 field-of-view (green). The drawing reflects their relative sizes for a 400,000 km distance calibration. The arrows show the movement of the boresight (NSP1) axis, moving 3 degree full swing, or 1.5 degree off-center. Center is defined at points 1,4, & 7. The 1-degree NSP1 field-of-view is expected to move completely off the target at points 2,3,5, & 6. The target will stay well-within the VIS/NIR/MIR camera's field of view at all times. The Moon (dia. \sim 0.5 deg) is expected to under fill the 1deg NSP1/FOV for this distance.

Figure 1. NSP1 FOV (dotted green circles) superimposed on the Earth (blue circle) or Moon (orange circle) for a 400,000 km Earthmoon look along with a representative pattern of slews and relative direction and lengths of slews drawn to proportion.

Figure 2. Two camera FOVs arranged to be co-centered (there are offsets in practice, but on order of a few pixels) with the NSP1 FOV (dotted green circles) center for the same scene in Figure 1. This figure shows that the Earth/Moon will be well captured within the Cameras for the duration of the sequence.

6

Comparison of Specification to the EARTHMOON_29K Sequence: Last Updated 2009-03-09

	Specified	Commanded	Observed	Commanded	Deviations from
	1	(3/08 Funct.)	(3/08 Eunot)	(3/9/09 Ver.)	Spec
		Mini-Ouic	$k \log k \sim 9 m$	ninutes (a)	1
VIS	Rate=3 Hz	Rate=0.816 Hz	0 79 Hz	0 12 Hz	(1)
110		1000 0.010 112	0.79 112	Duration: 60 s	(1)
NIR1	Rate=1 Hz	Rate=0 408 Hz	0 39 Hz	0 3 Hz	(1)
1,11,11	OPR 8 and OPR	AGC:ON	0.57 112	Setup, 15s	(1) (2)
	15	ENH:ENABLE		OPR6, 15s	(-)
	-	OFF		Duration: ~30s	
NIR2	Rate=1 Hz	Rate=0.408 Hz	0.40 Hz	0.3 Hz	(1)
	OPR 8 and OPR	AGC:ON		Setup, 15s	(2)
	15	ENH:ENABLE		OPR6, 15s	
		OFF		Duration: ~30s	
MIR1	Rate=3 Hz	Rate=3 Hz	3.00 Hz	0.07Hz	
	High Gain	High Gain		HiGain	
	-	-		LoGain	
				Duration: 120s	
MIR2	Rate=3 Hz	Rate=3 Hz	2.99 Hz	0.07Hz	
	High Gain	High Gain		HiGain	
				LoGain	
				Duration: 120s	
NSP1	Rate=1.7 Hz	Rate=1.7 Hz	1.69 Hz	IF: 72.2Hz, 30s	
	Hadamard Mode	Hadamard		DM: 145 Hz, 5s	
		Mode		HS: 1.7Hz, 30s	
				Duration: 65s	
NSP2	Rate=1.7 Hz	Rate=1.7 Hz	1.70 Hz	IF: 72.2Hz, 10s	
(a)	Hadamard Mode	Hadamard		DM: 145 Hz, 5s	
		Mode		HS: 1.7Hz, 30s	
LICD	Detector	D (0.5 H	0.50.11	Duration: 45s	
VSP	Rate= <not< td=""><td>Rate=0.5 Hz</td><td>0.50 Hz</td><td>0.2 Hz/int=0.1, 0.5,</td><td>(3)</td></not<>	Rate=0.5 Hz	0.50 Hz	0.2 Hz/int=0.1, 0.5,	(3)
	specified>	int=0.1, 0.2, 0.4		2.5s, for 30s	
	int=0.1, 0.2, 0.4	sec		1.3 HZ/Int=0.4s, for 20s	
TID	Sec Poto=1000 Hz	Poto-0 Uz	Off	Duration: ~828	(4)
ILF	Kate-1000 HZ	Alte-0 HZ	arga Slaw te	o Target) - 10 minutes	(4)
VIS	Call	leia Sieep (during I	Large Slew u	0.12 Hz for = 2.5 min	
V15				$G_{22} = 0.12 \text{ min}$	
				0.12 Hz for \sim 2.5 min	
				Gap for ~ 2.5 min	
NIR2				Gap for 2.5 min	
1,11,12				AGC:ON for 2.5 min	
				Gap for 2.5 min	
				AGC:ON for 2.5 min	
MIR2				0.07 Hz for 10 min	
	Alignment (Stare.	Slew N-S-Center.	Stare, Slew	E-W-Center, Stare, x2)~39	minutes
VIS			.,	2 snaps at Position 1.4.7	
NIR1				2 snaps each at:	
				OPR6 @ Position 1	
				OPR9 @ Position 4	
				AGC:ON @ Position 7	
NIR2				OPR6 @ Position 1	
				OPR9 @ Position 4	

		AGC:ON @ Position 7	
MIR1		2 snaps per Position	
		1,4,7 separated by 6s	
MIR2		2 snaps per Position	
		1,4,7 separated by 6s	
VSP		0.1 Hz/int=0.1,0.5,2.5	
NSP1		IF: 5Hz during slews	
		HS: 0.425 Hz during	
		stare	
NSP2		Off	

Notes:

(a) The order for powering the instruments is slightly different from Quicklook. For EarthMoon they are in order: VIS, NIR1, NIR2, VSP, MIR1, MIR2, NSP2, and NSP1, keeping each instrument on after being powered EXCEPT NSP2 which is turned off after its quicklook operation. The TLP is not powered during this sequence

Notes (Deviations from Specification):

- 1. The DHU cannot continuously take images with more than one camera without allocating a command sequence to control the camera. Command sequences are a limited resource and are shared between science modes. The command sequence used here to control VIS, NIR1 and NIR2 is also used during the impact sequence, and the rates are determined by bandwidth available at that time.
- 2. Image radiance in this situation will vary and has high uncertainty. The auto-gain mechanism on the NIR cameras was elected, along with key OPR 6/9 settings and the cameras report periodically what gain setting they are using.
- 3. The VSP rate was unspecified in the requirements.
- 4. The TLP will not be powered on during the swingby to reduce the number of power cycles it experiences.
- 5. 5 Hz did not fit within the downlink budget.
- 6. NIR1, NIR2, MIR1 and MIR2 were changed to provide context images at the end of each limb crossing.
- 7. 'Disabled' means the instrument is powered but its telemetry packets are suppressed.

		- F		
stand webser webser webser webser webser 1 66 157 150 Webser 1 Wood Canada Stand Webser 1 4 5 6 7 8 9 10 11	sart 551 Eara 7004 4 15 16 17 18 510 19 500 19 100 100 100 100 100 100 100 100 10	nn - Hant Provision na Fill Ban Pointy - Hant Van Satton - Sport Fisch Gent (Sin) - Ser Ban - Militade (Sin Bana Sen Satton Satt	Yanyilatadoji Bani Pointy - Kant Promikinggi - Kant Pangda 1946 Ger-Sait - Militar 95 nijetara Jeni alay Soto (Sant 1941)	enegeli Egen (kongo) – Kant vangant ngo – Kant vangeleneggi i Egen (kongo I silv said Veletari 4.5 militani atali atali veletati tituri. Silv said veletati titu
CLK IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	· · · · · · · · · · · · · · · · · · ·	<u>, , , , , , , , , , , , , , , , , , , </u>	CALL FOR MALE IN	
NR2 MILLION INTERNET				
MRI				
MR2			Tonnan I	
NSP1				
1891 - B				
kspi ksp2 Vsp				
NSPI				
NSPI	C D1	E1 F1	G1 D2 F	E2 F2 G2
	<u>C</u> D1	E1 F1	<u>G1 D2 E</u>	E2 F2 G2

Earthmoon-29k Observation Pattern: Last Updated 2009-03-09

Notes: The pattern above is missing NIR1, MIR1 and NSP2. This is because this sequence was developed on the PL simulator that did not have a complete instrument complement.

(A) A shortened quicklook sequence (with a reverse in NSP2 and NSP1 order).

(B) During a slew towards the Earth/Moon where the Earth/Moon might be captured in the largest FOVs (VIS and NIR2/AGC:On are chosen to cover a large dynamic range). MIR2 is also streaming images. The other instruments, although powered, are having their data streamed from the DHU.

(C) Alignment portion of this sequence begins here with a 7-minute stare at Position 1. The 5 cameras have snapshots taken at 3 points.

(D1, D2) Slewing to the North, then South (through center) to Center. Only NSP1 and VSP data is taken throughout.

(E1, E2) Stare at Position 4 after a N/S slew. Snapshots with the 5 cameras are resumed. NSP1 and VSP data taken throughout.

(F1, F2) Slewing to the East then West(through center) to Center. Only NSP1 and VSP data is taken throughout.

(G1, G2) Stare at Position 7 after a E/W slew. Snapshots with the 5 cameras are resumed. NSP1 and VSP data taken throughout.

Earthmoon-29k Sequence Milestones: Last Updated 2009-03-09

Start Sim	nu	lation		
length:	-	full-le	ngth	
slot:	(5		
filename:	•	earthmo	on-29k.cmd	
	TT 71	(Mee		
msec N	1 V I	4 MSG		min:sec
00000000		5 ECHO:	Start Seguence	(000:00.00)
00000050	(5 ECHO:	TLM HSS RATE :rate 29000	(000:00.05)
00000100	(5 ECHO:	Mode: EARTHMOON 29	(000:00.10)
00000150	(5 ECHO:	Mode: VIS	(000:00.15)
00060950	(5 ECHO:	Mode: NIR1	(001:00.95)
00093350	(5 ECHO:	Mode: NIR2	(001:33.35)
00125750	(5 ECHO:	Mode: VSP	(002:05.75)
00207600	(5 ECHO:	Mode: MIR1	(003:27.60)
00336300	(5 ECHO:	Mode: MIR2	(005:36.30)
00465000	(5 ECHO:	Mode: NSP2	(007:45.00)
00510350	(5 ECHO:	Mode: NSP1	(008:30.35)
00575700	(5 ECHO:	Mode: Camera Sleep	(009:35.70)
01236700	(5 ECHO:	Mode: ALIGNMENT	(020:36.70)

01239950	6	ECHO:	Start:	DB1 Earth Point	(020:39.95)
01659950	6	ECHO:	Start:	1.5 min Slew North p3	(027:39.95)
01749950	6	ECHO:	Start:	Pitch_North_p3	(029:09.95)
01750950	6	ECHO:	Start:	3_min_Slew_South_p3	(029:10.95)
01929950	6	ECHO:	Start:	Pitch_South_p3	(032:09.95)
01930950	6	ECHO:	Start:	1.5_min_Slew_Earth_Point	(032:10.95)
02019950	6	ECHO:	Start:	DB1_Earth_Point	(033:39.95)
02139950	6	ECHO:	Start:	1.5_min_Slew_East_p3	(035:39.95)
02229950	6	ECHO:	Start:	Yaw_East_p3	(037:09.95)
02230950	6	ECHO:	Start:	3_min_Slew_West_p3	(037:10.95)
02409950	6	ECHO:	Start:	Yaw_West_p3	(040:09.95)
02410950	6	ECHO:	Start:	1.5_min_Slew_Earth_Point	(040:10.95)
02499950	6	ECHO:	Start:	DB1_Earth_Point	(041:39.95)
02619950	6	ECHO:	Start:	1.5_min_Slew_North_p3	(043:39.95)
02709950	6	ECHO:	Start:	Pitch_North_p3	(045:09.95)
02710950	6	ECHO:	Start:	3_min_Slew_South_p3	(045:10.95)
02889950	6	ECHO:	Start:	Pitch_South_p3	(048:09.95)
02890950	6	ECHO:	Start:	1.5_min_Slew_Earth_Point	(048:10.95)
02979950	6	ECHO:	Start:	DB1_Earth_Point	(049:39.95)
03099950	6	ECHO:	Start:	1.5_min_Slew_East_p3	(051:39.95)
03189950	6	ECHO:	Start:	Yaw_East_p3	(053:09.95)
03190950	6	ECHO:	Start:	3_min_Slew_West_p3	(053:10.95)
03369950	6	ECHO:	Start:	Yaw_West_p3	(056:09.95)
03370950	6	ECHO:	Start:	1.5_min_Slew_Earth_Point	(056:10.95)
03459950	6	ECHO:	Start:	DB1_Earth_Point	(057:39.95)
03580450	6	ECHO:	End Sec	quence	(059:40.45)

Earthmoon-29k Observation Statistics: Last Updated 2009-03-09

Slot:		6		
Filenam	ne:	earthm	oon-29k.c	cmd
Elapsed	d Time:	358055	0 msec (5	59.68 min)
		1	PDS Data	
Instrum	nent (Counts	Volume	Kbytes
				_
VIS:		58	58000	
MIR1:	:	3260	195600	
MIR2:	:	2559	153540	
NIR1:	:	24	48000	
NIR2:	:	60	120000	
NSP1	IF:	9640	964	
NSP1	HS:	439	5268	
NSP1	DM:	100	10	
NSP2	IF:	724	72	
NSP2	HS:	52	624	
NSP2	DM:	100	10	
VSP	BM:	241	21690	
VSP	SM:	20	600	
TLP:		0	0	
			11000	Mlasstaa

11893 Mbytes

Earthmoon Higher Rate: Last Updated 2009-03-09

There are two possible rates for Earthmoon, 29k and 60k. Comparison between the two is summarized below. Changes are indicated with bold.

	Earthmoon 29k	Earthmoon 60k			
	(3/9/09 Ver.)	(3/9/09 Ver.)			
	Mini-Quicklook	~ 9 minutes (a)			
VIS	0.12 Hz, Total Duration: 60 s	0.12 Hz, Total Duration: 60 s			
NIR1	0.3 Hz, Setup, 15s, OPR6, 15s	0.3 Hz, Setup, 15s, OPR6, 15s			
	Total Duration: ~30s	Total Duration: ~30s			
NIR2	0.3 Hz, Setup, 15s, OPR6, 15s	0.3 Hz, Setup, 15s, OPR6, 15s			
	Total Duration: ~30s	Total Duration: ~30s			
MIR1	0.07Hz, HiGain, 60s, LoGain, 60s	0.07Hz, HiGain, 60s, LoGain, 60s			
	Total Duration: 120s	Total Duration: 120s			
MIR2	0.07Hz, HiGain, 60s, LoGain, 60s	0.07Hz, HiGain, 60s, LoGain, 60s			
	Total Duration: 120s	Total Duration: 120s			
NSP1	IF: 72.2Hz, 30s	IF: 72.2Hz, 30s			
	DM: 145 Hz, 5s	DM: 145 Hz, 5s			
	HS: 1.7Hz, 30s	HS: 1.7Hz, 30s			
	Duration: 65s	Duration: 65s			
NSP2	IF: 72.2Hz, 10s	IF: 72.2Hz, 10s			
(a)	DM: 145 Hz, 5s	DM: 145 Hz, 5s			
	HS: 1.7Hz, 30s	HS: 1.7Hz, 30s			
	Duration: 45s	Duration: 45s			
VSP	0.2 Hz/int=0.1, 0.5, 2.5s, for 30s	0.2 Hz/int=0.1, 0.5, 2.5s, for 30s			
	1.3 Hz/int=0.4s, for 20s	1.3 Hz/int=0.4s, for 20s			
	Duration: ~82s	Duration: ~82s			
TLP	Off	Off			
1110	Camera Sleep (during Large Sl	ew to Target) ~ 10 minutes			
VIS	0.12 Hz for ~2.5 min	0.23 Hz for ~2.5 min			
	Gap for ~2.5 min	Gap for ~2.5 min			
	0.12 Hz for ~2.5 min	0.23 Hz for ~ 2.5 min			
	Gap for ~2.5 min	Gap for ~ 2.5 min			
NIR2	Gap for 2.5 min	0.23 Hz/AGC:ON for ~2.5 min			
	0.12 HZ/AGC:ON for 2.5 min	Gap for ~ 2.5 min			
	Gap for 2.5 min	0.23 HZ/AGC:ON for \sim 2.5 min			
MIDO	0.12HZ/AGC:ON for 2.5 min	$Gap \text{ for } \sim 2.5 \text{ min}$			
MIK2	0.07 HZ for 10 min	0.125 HZ for 10 min			
MIC	Alignment (Stare, Slew N-S-Center, Stare, S	Siew E-w-Center, Stare, x2)~39 minutes			
VIS NID 1	2 snaps at Position 1,4,7	2 shaps at Position 1,4,7			
NIKI	2 snaps each at:	2 snaps each at:			
	OPRO @ Position 4	OPR0 @ Position 1			
	ACC:ON @ Position 7	ACC:ON @ Position 7			
NIDO	ODDA @ Desition 1	ODD6 @ Desition 1			
INIKZ	OPRO(w) Position 4	OPR0 @ Position 4			
	AGC:ON @ Position 7	AGC:ON @ Position 7			
MIR1	2 snans per Position 1/17 separated by 6s	2 snaps per Position 1.4.7 separated by 6s			
MIR?	2 snaps per rosition 1,4,7 separated by 6s	2 snaps per rosition 1.4.7 separated by 6s			
VSP	2 shaps per rosition 1,4,7 separated by 0s	0.16 Hz/int=0.1.0.5.2.5			
NSP1	V.1 112/111 = 0.1, 0.5, 2.5 IF: 5Hz during clews (ckin 13)	IF $10 \text{ Hz}/\text{III} = 0.1, 0.5, 2.5$			
11011	(Note there is a 5 Hz IF mode before	(Note there is a 5 Hz IF mode before Position 1)			
	Position1)	HS: 0.85 Hz during stare (skin 2)			
	HS: 0 425 Hz during stare (skin 3)	List of the during suite (skip 2)			
NSP2	Off				
	-				

Comparison of Earthmoon_60k to Earthmoon_29k: Last Updated 2009-03-09

Earthmoon-60k Observation Pa	attern: Last U	pdated	2009	9-03-	.09
------------------------------	----------------	--------	------	-------	-----

Statistical statistical and statistical and statistical statistics and	Burt Dity Bart 1994 23 24 25 26	7 28 Senditi kut 1821 Tat iznesterinizmismi	Storifti Sannöbysindert Storifs för Siv Sib Polant 1.	30 Start an Lagost - 20 Start a	i Netectille fan koit Sint Sie Eks kolest is		i Sean toi meni keni ja 11 See Seo Kopput (S) Sagta Bajja za Sagta Vitadongan kon Kanadan da Vitadongan kon
			1	a che l'è les le				
	111				4			
NR2 Contraction Contraction	4 6 8				2			
MIRI	T T T		2		1			
MIP2	1. 1. 15				-			
NSP1								
NSP2								
VSP								
		ALL LANDLALL	ILL LLLLL		Lill J.L.	A A A A A A A A A A A A A A A A A A A	La	Later register Later

Notes: The pattern above is missing NIR1, MIR1 and NSP2. This is because this sequence was developed on the PL simulator that did not have a complete instrument complement.

Earthmoon-60k Sequence Milestones: Last Updated 2009-03-09

Start Simulation
length: full-length
slot: 6
filename: earthmoon-60k.cmd

msec	NVM	Msg		min:sec
0000000	0 6	ECHO:	Start Sequence	(000:00.00)
0000005	0 6	ECHO:	TLM HSS RATE :rate 60000	(000:00.05)
0000010	0 6	ECHO:	Mode: EARTHMOON 60	(000:00.10)
0000015	0 6	ECHO:	Mode: VIS	(000:00.15)
0006095	0 6	ECHO:	Mode: NIR1	(001:00.95)
0009335	0 6	ECHO:	Mode: NIR2	(001:33.35)
0012575	0 6	ECHO:	Mode: VSP	(002:05.75)
0020760	0 6	ECHO:	Mode: MIR1	(003:27.60)
0033630	0 6	ECHO:	Mode: MIR2	(005:36.30)
0046500	0 6	ECHO:	Mode: NSP2	(007:45.00)
0051035	0 6	ECHO:	Mode: NSP1	(008:30.35)
0057570	0 6	ECHO:	Mode: Camera Sleep	(009:35.70)
0123670	0 6	ECHO:	Mode: ALIGNMENT	(020:36.70)
0123995	0 6	ECHO:	Start: DB1 Earth Point	(020:39.95)
0165995	0 6	ECHO:	Start: 1.5 min Slew North p3	(027:39.95)
0174995	0 6	ECHO:	Start: Pitch_North_p3	(029:09.95)
0175095	0 6	ECHO:	Start: 3_min_Slew_South_p3	(029:10.95)
0192995	0 6	ECHO:	Start: Pitch South p3	(032:09.95)
0193095	0 6	ECHO:	Start: 1.5 min Slew Earth Point	(032:10.95)
0201995	0 6	ECHO:	Start: DB1 Earth Point	(033:39.95)
0213995	0 6	ECHO:	Start: 1.5_min_Slew_East_p3	(035:39.95)
0222995	0 6	ECHO:	Start: Yaw East p3	(037:09.95)
0223095	0 6	ECHO:	Start: 3_min_Slew_West_p3	(037:10.95)
0240995	0 6	ECHO:	Start: Yaw West p3	(040:09.95)
0241095	0 6	ECHO:	Start: 1.5 min Slew Earth Point	(040:10.95)
0249995	0 6	ECHO:	Start: DB1 Earth Point	(041:39.95)
0261995	0 6	ECHO:	Start: 1.5 min Slew North p3	(043:39.95)
0270995	0 6	ECHO:	Start: Pitch North p3	(045:09.95)
0271095	0 6	ECHO:	Start: 3 min Slew South p3	(045:10.95)
0288995	0 6	ECHO:	Start: Pitch South p3	(048:09.95)

02890950	6 ECHO:	Start:	1.5 min Slew Earth Point	(048:10.95)
02979950	6 ECHO:	Start:	DB1 Earth Point	(049:39.95)
03099950	6 ECHO:	Start:	1.5_min_Slew_East_p3	(051:39.95)
03189950	6 ECHO:	Start:	Yaw_East_p3	(053:09.95)
03190950	6 ECHO:	Start:	3_min_Slew_West_p3	(053:10.95)
03369950	6 ECHO:	Start:	Yaw_West_p3	(056:09.95)
03370950	6 ECHO:	Start:	1.5_min_Slew_Earth_Point	(056:10.95)
03459950	6 ECHO:	Start:	DB1_Earth_Point	(057:39.95)
03580450	6 ECHO:	End Se	quence	(059:40.45)

Earthmoon-60k Observation Statistics: Last Updated 2009-03-09 Slot: 6

SIOL:		0		
Filenar	ne:	earthm	oon-60k.	cmd
Elapsed	d Time	: 358055	0 msec (5	59.68 min)
Instru	ment	Counts	Volume	Kbytes
VIS:		94	94000	
MIR1	:	3260	195600	
MIR2	:	2592	155520	
NIR1	:	24	48000	
NIR2	:	96	192000	
NSP1	IF:	16639	1664	
NSP1	HS:	567	6804	
NSP1	DM:	100	10	
NSP2	IF:	724	72	
NSP2	HS:	52	624	
NSP2	DM:	100	10	
VSP	BM:	397	35730	
VSP	SM:	20	600	
TLP:		0	0	
			12084	Mbytes

7.4 CENTAUR SEPARATION SEQUENCE GUIDELINES

Assumptions:

- SC slew rate = 0.5 deg/sec
- Possible cold-ops: T<0 C

Primary Goals:

1. Monitor Centaur separation from SC to measure separation and tumble rates

Requirements:

- 1. Want to image at visible and IR wavelengths as rapidly as possible.
- 2. Telemetry rate < 220 kbps

Instruments and Specifications:

- 1. Visible camera running at maximum allowable rate
- 2. MIR camera (unfiltered) running at maximum allowable rate
- 3. TLP also on looking for flashes from the Centaur

Rate/Spec Summary:

Vis cam: 5 Hz NIR1 cam: off NIR2 cam: off MIR1 cam: off MIR2 cam: sample rate = 5 Hz TLP: 1000 Hz VSP: off NSP1: off NSP2: off

1	Specified	Commanded	Observed	Deviations
		(3/08 Functionals)	(Funct./ORT6) [a]	from Spec
VIS	Rate=5 Hz	Rate=0.816 Hz	0.81 Hz	(1)
			Total: 584 (Funct)	
			Total: 632 (ORT6)	
NIR1	Off	Off	Off	
NIR2	Off	Off	Off	
MIR1	Off	Off	Off	
MIR2	Rate=5 Hz	Rate=0.8 Hz	0.81 Hz	(1)
	High Gain	High Gain	Total: 582 (Funct)	
			Total: 697 (ORT6)	
NSP1	Off	Off	Off	
NSP2	Off	Off	Off	
VSP	Off	Off	Off	
TLP	Rate=1000 Hz	Off	Off	(2)

Comparison of Specification to the SEPARATION Sequence: Last Updated: 2009-03-06

Notes:

[a] In actual flight, the cameras will be kept on until the decision is made to turn them off or 1 hour after power up, whichever comes first. Therefore, the total number of VIS and MIR2 images will alter accordingly.

[b] In actual flight, the VIS camera will be powered on immediately after DHU turn on, but before the separation sequence. VIS is set to run with Rate=0.12 Hz (typical VIS rate for DHU at 29k). Once the S/C rate has been set to 246KHZ (DHU at 220k), then separation-220k is initiated. (This is not demonstrated as of 2009-03-06, Request was put into MOS).

Notes (Deviation from Specification):

- 1. VIS & MIR2 Cannot fit 5 Hz into the bandwidth.
- 2. The TLP is no longer part (powered) of this sequence. This is to minimize TLP power cycles during mission.

Separation-220k Observation Pattern: Last Updated 2008-04-24

(This image should be replaced with correct sequence w/ slew maneuver timing)

	494	Mode: SEPARANDON 220 StartSequence	496	497	498	499	500	501	502	503	504	A Set Em Inal de lay	506	507 6
CLK	ľ		'	'	'	'	'			'	'			
VIS		******	*****					*******					******	
NIR1														
NIR2														
MIR1														
MIR2														
NSP1														
NSP2														
VSP														
TLP														
	1													
						יי רו ואי אין אר א		ה' מי דיוני (מי		n i na s			r' '()	

Separation-220k Sequence Milestones: Last Updated 2008-04-24

```
Start Simulation
length: full-length
slot: 5
```

filename: separation-220k.cmd

 msec
 NVM Msg
 min:sec

 00000000
 5 ECHO: Start Sequence
 (000:00.00)

 00000100
 5 ECHO: Mode: SEPARATION 220
 (000:00.10)

 01236250
 5 ECHO: After nominal delay
 (020:36.25)

Separation-220k Observation Statistics: Last Updated 2008-04-24

Slot:		5		
Filenar	ne:	separa	tion-2201	c.cmd
Elapsed	d Time:	: 123635	0 msec (2	20.61 min)
-			PDS Data	
Instru	nent	Counts	Volume	Kbytes
VIS:		1012	1012000	
MIR1	:	0	0	
MIR2	:	1002	60120	
NIR1	:	0	0	
NIR2	:	0	0	
NSP1	IF:	0	0	
NSP1	HS:	0	0	
NSP1	DM:	0	0	
NSP2	IF:	0	0	
NSP2	HS:	0	0	
NSP2	DM:	0	0	
VSP	BM:	0	0	
VSP	SM:	0	0	
TLP:		0	0	
				-
			3016	Mbytes

In actual flight, the cameras will be kept on until the decision is made to turn them off or 1 hour after power up, whichever comes first. Therefore, the total number of VIS and MIR2 images will alter accordingly, as the above simulation is for 20 minutes.

In actual flight, the VIS camera will be powered on immediately after DHU turn on, but before the separation sequence. VIS is set to run with Rate=0.12 Hz (typical VIS rate for DHU at 29k). Once the S/C rate has been set to 246KHZ (DHU at 220k), then separation-220k is initiated. Therefore there are additional VIS images from this early-glimpse period.

Separation Contingency: Last Updated: 2009-03-06

Nominal separation is separation-220k. Rate contingency is separation-58k. Comparison between the baseline and contingency is summarized below.

	Baseline separation-220k	Contingency separation-58k
VIS	Rate=0.816 Hz	Rate= TBR
NIR1	Off	Off
NIR2	Off	Off
MIR1	Off	Off
MIR2	Rate=3 Hz	Rate=TBR

	High Gain	High Gain
NSP1	Off	Off
NSP2	Off	Off
VSP	Off	Off
TLP	Off	Off

Separation Contingency Sequence Milestones: Last Updated: 2009-03-06 <not done yet>

Separation Contingency Observation Statistics: Last Updated: 2009-03-06 <not done yet>

7.5 PREIMPACT AND THE FINAL HOUR OF OPERATIONS

The final hour of the mission contains four mission periods: pre-impact, flash, curtain and crater. These periods are implemented on the DHU via two command sequences, preimpact and impact. The final hour is split into two sequences to facilitate managing anomalies from the ground. Each of these two sequences comes in two versions that differ by bandwidth: preimpact_1000k, preimpact_220k, impact_1000k and impact_220k.

Compa				
	Specified	Commanded	Observed	Deviations from
		(CPT)	(CPT/TVAC)	Spec
VIS	None given	Rate=0.816 Hz	0.82 Hz	
NIR1	None given	Rate=0.408 Hz	0.41 Hz	
		OPR 6		
		ENH:ENABLE OFF		
NIR2	None given	Rate=0.408 Hz	0.41 Hz	
		OPR 6		
		ENH:ENABLE OFF		
MIR1	None given	Rate=3 Hz	3.00 Hz	
	_	High Gain		
MIR2	None given	Rate=3 Hz	3.00 Hz	
		High Gain		
NSP1	None given	Rate=1.7 Hz	IF for 155 s then	
		Hadamard Mode	DM for 60 s then	
			HS @ 1.69 Hz	
NSP2	None given	Rate=1.7 Hz	IF for 155 s then	
		Hadamard Mode	DM for 60 s then	
			HS @ 1.69 Hz	
VSP	None given	Rate=0.2 Hz	0.20 Hz	
		int=0.1, 0.5, 2.5 sec	int=0.1, 0.5, 2.5 sec	
TLP	None given	Rate=1000 Hz	(1000 Hz)	(1)

Comparison (of Specificat	ion to the PREI	MPACT Sequence:
--------------	---------------	-----------------	------------------------

Notes (Deviations from Specification):

1. For flight, the TLP is powered on 20 minutes before the start of the impact sequence, not at the beginning of the preimpact sequence. This is achieved within the preimpact-1000k and also by a command from the ground (via the ATS). During instrument testing (CPT/TVAC) the TLP was not exercised within a DHU sequence, only powered separately for aliveness check. End2End testing (2009-02-27) is the only pre-flight test run with the entire correct complement.

Preimpact-impact-1000k Observational Pattern: Last Updated 2008-04-24

Notes:

- (A) Instrument initialization and checkout
- (B) Long period of instrument operations in curtain mode
- (C) Flash mode
- (D) Curtain mode
- (E) Crater mode

Impact-1000k Observation Pattern: Last Updated 2008-04-24

This figure gives an overview of the impact observation timeline. The beginning of each phase (flash, curtain, crater and S-S/C impact) is shown. (Impact here means impact of the shepherding spacecraft.) Figures below zoom in on each phase.

Preimpact-impact-1000k Sequence Milestones: Last Updated 2009-02-19

Start Simulation
length: full-length
slot: 1
filename: preimpact-1000k.cmd

msec	NVM	Msg		min:sec
0000000	0 1	ECHO:	Start Sequence	(000:00.00)
0000005	0 1	ECHO:	ver impact-1000k 2008-11-20	(000:00.05)
0000010	0 1	ECHO:	TLM HSS RATE :rate 1000000	(000:00.10)
0000295	0 1	ECHO:	Mode: PREIMPACT 1000	(000:02.95)
0021795	0 1	ECHO:	MODE: PREIMPACT SLEEP	(003:37.95)
0174735	0 1	ECHO:	TLP Activated	(029:07.35)
0294755	0 2	ECHO:	Stop Other Sequences	(049:07.55)
0294765	0 2	ECHO:	Mode: FLASH 1000	(049:07.65)
0300445	0 2	ECHO:	Start VSP Exposure	(050:04.45)
0300745	0 2	ECHO:	Predicted Centaur impact time	(050:07.45)
0301235	0 2	ECHO:	Mode: CURTAIN 1000	(050:12.35)
0319235	0 2	ECHO:	Mode: CRATER 1000	(053:12.35)
0325235	0 2	ECHO:	Predicted SSC impact time	(054:12.35)
0354915	0 2	ECHO:	Exit IMPACT 1000	(059:09.15

Preimpact-impact-1000k Observation Statistics: Last Updated 2009-02-19

Ţ		
preimp	act-1000}	k.cmd
354925	0 msec (5	59.15 min)
	PDS Data	
Counts	Volume	Kbytes
2531	2531000	
10484	629040	
10474	628440	
1425	2850000	
1506	3012000	
15991	1599	
5556	66672	
1202	120	
9863	986	
5666	67992	
1202	120	
797	71730	
0	0	
14450	144	
	l preimp 354925 Counts 2531 10484 10474 1425 1506 15991 5556 1202 9863 5666 1202 797 0 14450	1 preimpact-1000 3549250 msec (5 PDS Data Counts Volume 2531 2531000 10484 629040 10474 628440 1425 2850000 1506 3012000 15991 1599 5556 66672 1202 120 9863 986 5666 67992 1202 120 797 71730 0 0 14450 144

50518 Mbytes

7.6 IMPACT/FLASH SEQUENCE GUIDELINES

Flash time frame assumptions:

tau(vis flash) ~ 0.2 sec, T = 0.0 to 0.2 sec tau(NIR flash) ~ 2.0 sec, T = 0.0 to 2.0 sec tau(MIR flash) ~ 2.0 sec, T = 0.2 to 4.0 sec

Uncertainty in impact time = +/-1 sec Uncertainty in command time = +/-1 sec Uncertainty in SC clock time = +/-1 sec

Total uncertainty = +/-1.7 sec Need spectrum of flash to fix TLP total power measurements.

Primary Goals:

- 1. Identify the location of the flash
- 2. Capture the visible flash
- 3. Capture the NIR flash
- 4. Capture the MIR flash
- 5. Time resolved measurements of the total power of the flash
- 6. Measure the visible spectrum of the flash
- 7. Measure the NIR spectrum of the flash

Requirements:

Not written out explicitly in Draft A.

Instruments and Specifications:

- 1) NIR cam: Satisfies Measurements 1-3
 - a. Integration time set to > 0.2 seconds to capture entire visible flash while still resolving NIR flash. Would want sampling to be continuous: Rate = 1/0.2 sec = 5 Hz.
 - b. No filtering (not looking for water ice).
- 2) MIR cam: Satisfies Measurement 4
 - a. Sample rate must resolve the ~4 second lifetime: Rate > 1/2.0 = 0.5 Hz.
 - b. Both cameras, with filtering, as a water vapor plume may be possible.
- 3) TLP: Satisfies Measurement 5
 - a. Measurement Rate at 1000 Hz
- 4) Vis Spec: Satisfies Measurement 6
 - a. Integration time set to > 0.2 seconds to capture entire vis flash
 - b. Would want sampling to be continuous: Rate = 1/0.2 sec = 5 Hz.
- 5) NIR Spec: Satisfies Measurement 7
 - a. Continuous Nadir measurements in "flash" mode

Rate/Spec Summary:

Vis cam: 0.1 Hz NIR1 cam: 0.1 Hz, integration = 0.2 sec NIR2 cam: 5 Hz, integration = 0.2 sec MIR1 cam: 0.5 Hz, High Gain MIR2 cam: 0.5 Hz, High Gain TLP: 1000 Hz VSP: 5 Hz, integration = 0.2 sec NSP1: No Decimation, Flash mode NSP2: No Decimation, Hadamard mode

Comparison	of Specification	to the FLASH Mode:	: Last Updated 2009-03	6-09
------------	------------------	--------------------	------------------------	------

	Specified	Commanded	Observed	Observed	Deviations
		(CPT)	(CPT)	(E2E)	from Spec
VIS	Rate=0.1 Hz	Rate=0 Hz	Disabled	Disabled	(1)
NIR1	Rate=0.1 Hz	Rate=3 Hz	2.98 Hz	2.98 Hz	(2)
	int=0.2 sec	OPR=15 (int=16.24			(3)
		ms)			
		ENH:ENABLE			
		OFF			
NIR2	Rate=5 Hz	Rate=0 Hz	Disabled	Disabled	(1)
	int=0.2 sec				
MIR1	Rate=0.5 Hz	Rate=0.5 Hz	0.50 Hz	0.50 Hz	
	High Gain	High Gain			
MIR2	Rate=0.5 Hz	Rate=0.5 Hz	0.50 Hz	0.50 Hz	
	High Gain	High Gain			
NSP1	Rate=72 Hz	Rate=72 Hz	Flash mode	Flash	
	Flash Mode	Flash Mode		mode	
NSP2	Rate=1.7 Hz	Rate=1.7 Hz	1.69 Hz	1.69 Hz	
	Hadamard	Hadamard Mode			
	Mode				
VSP	Rate=5 Hz	Rate=Two 4s exp.	2 x 4s	Triplet	(4)
	int=0.2 sec	int=4 sec	exposures	2s,2s,2s	
				exposures	
TLP	Rate=1000 Hz	Rate=1000 Hz	Not Tested	1000 Hz	

Notes:

- 1. Multiplexing the VIS, NIR1 and NIR2 cameras greatly reduces the achievable rates. To get a high rate on NIR1, VIS and NIR2 were stopped during flash. Although NIR2 is more sensitive, NIR1 was chosen to allow a longer integration time before saturating.
- 2. 5 Hz does not fit with appropriate margin in the bandwidth.
- 3. NIR camera does not support 0.2 s integration times with the currently understood interface.
- 4. 5 Hz is not achievable with the DHU's current VSP interface. Decision was made to go for triplet of 2s to cover the expected Centaur-impact time. This was only tested during 2008-12-10 Post Cap and 2009-02-26/27 E2E testing, due to a late delivery of this sequence nuance. All CPT testing prior has two 4s exposures, with a gap in VSP coverage at the beginning of curtain.

.....

Curtain

C D E

357 ¢Ľk'| A NSP1

Flash Mode Observational Pattern: Last Updated 2008-04-24

Flash

'NSP2' VSP TLP

<Update with the E2E data. Reveals subtle VSP timing change.> Notes:

A. The VIS/NIR1/NIR2 camera loop stops and NIR1 starts. Note the unavoidable delay in starting NIR1. NSP1 transitions to flash mode.

- B. The tick on the VSP line represents receipt of one 4 second test exposure.
- C. The start of the VSP 4 second exposure positioned to cover the impact flash
- D. The predicted Centaur impact time
- E. The receipt of the VSP packet.
- F. Numbers on the clock line represent minutes. Unnumbered ticks represent seconds. Flash mode is approximately 1 minute long.

7.7 IMPACT/CURTAIN SEQUENCE GUIDELINES

Curtain Design Drivers:

At Time After Impact (TAI) = 10 sec Ejecta cloud optical depth, $\tau = .03$ Ejecta Cloud Radius, R = 1 kmVis Cam dx/pxl = 0.41 km NIR Cam dx/pxl = 0.92 km MIR Cam dx/pxl = 0.83 km Mean (mass weighted) curtain velocity ~125 m/sec At Time After Impact (TAI) = 60 sec Ejecta cloud optical depth, $\tau = .02$ Ejecta Cloud Radius, R = 10 kmVis Cam dx/pxl = 0.41 km NIR Cam dx/pxl = 0.72 km MIR Cam dx/pxl = 0.65 km Mean (mass weighted) curtain velocity ~175 m/sec At Time After Impact (TAI) = 120 sec Ejecta cloud optical depth, $\tau = .004$ Ejecta Cloud Radius, R = 20 kmVis Cam dx/pxl = 0.21 km NIR Cam dx/pxl = 0.48 km MIR Cam dx/pxl = 0.44 km Mean (mass weighted) curtain velocity ~250 m/sec

Primary Goals:

- 1. Monitor eject curtain to determine composition and properties
- 2. Measure curtain evolution to estimate total ejecta mass
- 3. Monitor eject curtain thermal evolution
- 4. Obtain image pairs in with NIR and MIR cameras

Requirements:

- 1. Measure ejecta cloud radiance in the UV/Visible at levels between 0.5 and 5 W m⁻² μ m⁻¹ str⁻¹ (curtain only component) with a contrast ratio of 80 and 8 respectively: VSP integration times should bracket this change in contrast: 0.5 sec with a fact of 4 multiplier gives 0.1<dt<2.5 sec, or a contrast range of 25.
- 2. Measure ejecta cloud radiance in the NIR at levels between 0.25 and 1 W m⁻² μ m⁻¹ str⁻¹ (curtain only component at 1.5 μ m) with a contrast ratio of 20 and 5 respectively: NSP samples should be undecimated to maximize total number of samples. NIR Camera integration times should bracket this change in contrast: 0.02 (TBR) <dt< 0.08 (TBR) sec, or a contrast range of 4.
- 3. Image the expansion of the ejecta curtain without blur: visible images once every 2 seconds, NIR/MIR image pairs once every 4 seconds.
- 4. Resolve the expansion of the ejecta cloud by not allowing ejecta parcels to travel further than ~3 pixels between images

5. Solar viewing NSP (NSP2) kept in view of the sun (+/- 65 degrees) as long as the MGA FOV kept to earth.

Instruments and Specifications:

- 1. NSP 1 Hadamard mode, no decimation
- 2. NSP 2 Hadamard mode, no decimation
- 3. VSP in bracket mode: dt = 0.5 sec, factor = 5
- Visible camera images separated by < 3x(resolution/curtain_velocity) = 3x0.21 km/ 0.25 km/sec = 3x0.8 sec = 2.5 sec (requirement #4 above)
- 5. NIR cameras with time separation between image pairs (one from each camera) < (resolution/curtain_velocity) = 0.44 km/ 0.25 km/sec = 1.8 sec
- 6. NIR camera image pairs separated by < 3x(resolution/curtain_velocity) = 5.4 sec (requirement #4 above)
- 7. MIR cameras with time separation between image pairs (one from each camera) < (resolution/curtain velocity) = 0.48 km/ 0.25 km/sec = 1.9 sec
- MIR camera image pairs (image pair period) separated by < 3x(resolution/curtain_velocity) = 5.7 sec
- 9. TLP, no decimation

Rate/Spec Summary:

Vis cam: 1 Hz NIR1/NIR2 image pair period: 3 Hz NIR1 OPR 8 and 15 (TBR) NIR2 OPR 8 and 15 (TBR) MIR1/MIR2 image pair period: 3 Hz MIR1, High Gain MIR2, High Gain TLP: 1000 Hz VSP: Bracket Mode with tau = 0.5 sec, factor = 5 NSP1: No Decimation, Hadamard mode NSP2: No Decimation, Hadamard mode

Curtain Model Supplementary Figures

	Specified	Commanded	Observed	Observed	Deviations from
	-	(CPT)	(CPT)	(E2E)	Spec
VIS	Rate=1 Hz	Rate=0.816 Hz	0.82 Hz	0.82 Hz	(1)
NIR1	Rate=3 Hz	Rate=0.408 Hz	0.41 Hz	0.41 Hz	(1)
	OPR 8 and OPR	OPR 6			(2)
	15	ENH:ENABLE			
		OFF			
NIR2	Rate=3 Hz	Rate=0.408 Hz	0.41 Hz	0.41 Hz	(1)
	OPR 8 and OPR	OPR 6			(2)
	15	ENH:ENABLE			
		OFF			
MIR1	Rate=3 Hz	Rate=3 Hz	3.00 Hz	3.00 Hz	
	High Gain	High Gain			
MIR2	Rate=3 Hz	Rate=3 Hz	3.00 Hz	3.00 Hz	
	High Gain	High Gain			
NSP1	Rate=1.7 Hz	Rate=1.7 Hz	1.69 Hz	1.69 Hz	
	Hadamard Mode	Hadamard Mode			
NSP2	Rate=1.7 Hz	Rate=1.7 Hz	1.69 Hz	1.69 Hz	
	Hadamard Mode	Hadamard Mode			
VSP	Rate=?	Rate=0.2 Hz	0.20 Hz	0.20 Hz	(3)
	int=0.1, 0.5, 2.5	int=0.1, 0.5, 2.5			
	sec	sec			
TLP	Rate=1000 Hz	Rate=1000 Hz	Not Tested	1000k	(4)

Comparis	on of Speci	fication to tl	ne CURTAIN	N Mode: L	ast U	pdated	2009-	03-0	9
----------	-------------	----------------	------------	-----------	-------	--------	-------	------	---

Notes:

- 1. VIS at 1Hz + NIR1 at 3Hz + NIR2 at 3 Hz, does not fit within the available bandwidth with suitable margin.
- 2. Sensitivity (exposure time) for NIRs is a placeholder based on radiometric calibration. Desire NIR1 and NIR2 to maintain the same OPR setting to simplify image differencing.
- 3. No specification in rate was given for VSP. The rate of 0.2 Hz is the fastest the DHU can reliably drive the VSP in bracket mode for the above integration times. Note the VSP could go ~30% faster, but the interface between it and the DHU is prone to synchronization errors.
- 4. TLP is powered off at the beginning of Crater.

Curtain Mode Observational Pattern: Last Updated 2008-04-28

Detail showing transition from flash to curtain (clock ticks indicate seconds): Last Updated 2008-04-28

		- r			~ ~	-		-																									
3 (CLK	Start V	SP Expor	Predicted C	e tiğir Impaci t	me 10	11	ode #C_U R I	TA₩31000	14 1	15 1	16 1	17	18 1	19 1	20 1	21	22 1	23 1	24 1	25 1	26 1	27 1	28 1	29 1	30 1	31 1	32 1	33 1	34 1	35 1	36 1	37 1	38 3 I I
VIS ⁺NIR1						+		-		1			+		· ,					+		1	-							+			
MIR2 MIR1		+		I	+		+			· · · ·	, ,,,,			, , , , , , , , ,	· · · ·	· · · ·	+ + + + + + + + +	++++	, ,,,, ,,,,		, , , , ,					, , , , ,		· · · ·	· · · ·	++++		· · · ·	+++++ +++++
NSP:					+ +		-+]	+ + •		- +	+ +	+ +		+ +	+ +	+	+ +	+ +	-+-+		+ +	+ +		+ +	+ +	+	+ +	+ +	+		+ +	+ +	-++- -++
VSP TLP			D			E						G											F										
				_	<u> </u>											_											_						

<update this with the E2E version to show the correct VSP timing>

Detail showing variation in image time stamping:

Notes:

- A. Predicted Centaur impact time
- B. Transition to curtain mode
- C. Transition to crater mode
- D. Predicted Centaur impact time (in the detail view)
- E. Transition to curtain mode, 5 seconds after the predicted impact time to account for prediction and execution errors.
- F. First VSP packet timestamped, 6.325 seconds after the transition to curtain. <update figure with the E2E version to show the correct VSP timing>
- G. This is a bracket mode packet; the first exposure starts at approximately G, 6 seconds after the transition and 11 seconds after the predicted Centaur impact time.
- H. The more important transition of NSP1 from Flash mode back to Hadamard spectrum mode.

I. Marks a triple cluster of ticks. One of the pair following the triple has moved earlier to join another pair. This is an open action item; the underlying cause isn't clear. We have not decided on a strategy to correct for it or whether to leave it uncorrected.

7.8 IMPACT/CRATER SEQUENCE GUIDELINES

Crater Design Drivers:

Centaur crater diameter ~20 meters Interior crater temperatures 180 seconds after Centaur impact >200 K

Primary Goals:

- 1. Image Centaur impact crater
- 2. Improve identification of impact crater location
- 3. Monitor ejecta cloud with side viewing spectrometer for composition and particle properties

Requirements:

- 1. Image Centaur impact point and surrounding terrain out to a distance of 15 km
- 2. Image crater in the thermal IR:>1 pixels across crater: <20 meter/pixel resolution

Instruments and Specifications:

- 1. MIR camera pixel resolution <20 meters/pixel (meets requirement #1)
- 2. MIR and NIR camera imaging of Centaur impact point at an altitude of 150 km (meets requirement #2)
- 3. NSP2 observations from 150 km to surface in Hadamard mode

Rate/Spec Summary:

Vis cam: 0.25 Hz NIR1 cam: 0.25 Hz NIR2 cam: 0.5 Hz MIR1 cam: 0.25 Hz, High Gain MIR2 cam: 0.5 Hz, High Gain TLP: 1000 Hz VSP: Bracket Mode with tau = 0.2 sec, factor = 2 NSP1: No Decimation, Hadamard mode

Comp	arison of Speeme		LIC MOUCE Las	. Opdated 20	07 05 17
	Specified	Commanded	Observed	Observed	Deviations from
		(CPT)	(CPT)	(E2E)	Spec
VIS	Rate=0.25 Hz	Rate=0 Hz	Rate=0 Hz	Rate=0 Hz	(1)
NIR1	Rate=0.25Hz	Rate=0 Hz	Rate=0 Hz	Rate=0 Hz	(1)
	OPR 8 and OPR				
	15				
NIR2	Rate=0.5 Hz	Rate=0.66 Hz	0.67 Hz	0.67 Hz	(1)
	OPR 8 and OPR	OPR 15			(2)
	15	ENH:ENABLE			
		OFF			
MIR1	Rate= 0.25 Hz	Rate=3 Hz	3.00 Hz	3.00 Hz	(1)
	High Gain	High Gain			
MIR2	Rate= 0.5 Hz	Rate=3 Hz	3.00 Hz	3.00 Hz	(1)
	High Gain	High Gain			
NSP1	Rate=1.7 Hz	Rate=1.7 Hz	1.70 Hz	1.70 Hz	
	Hadamard Mode	Hadamard Mode			
NSP2	Rate=1.7 Hz	Rate=1.7 Hz	1.70 Hz	1.70 Hz	
	Hadamard Mode	Hadamard Mode			
VSP	Rate=?	Rate=0.5 Hz	0.50 Hz	0.50 Hz	(3)
	int=0.1, 0.2, 0.4	int=0.1, 0.5, 2.5			
	sec	sec			
TLP	Rate=1000 Hz	Off	Not Tested	Off	(4)

Comparison	n of Specification	to the CRATER Mode:	Last U	Jpdated 2009-0	03-19
------------	--------------------	---------------------	--------	----------------	-------

Notes:

- 1. To emphasize the MIR imagery during this phase, they are placed at a max rate, with VIS and NIR1 not used. NIR2 camera can fit in at 0.66 Hz within the model.
- 2. NIR2 set to max sensitivity for this last minute. Currently parameterized as OPR 15 (16.24 ms).
- 3. No specification in rate was given for VSP. The rate of 0.52 Hz is the fastest the DHU can reliably drive the VSP in bracket mode for the above integration times.
- 4. TLP is powered off within CRATER to save bandwidth.

Crater Mode Observational Pattern: Last Updated 2008-04-28

Notes for the timeline:

- A. Start of crater mode
- B. Shepherding spacecraft impact

C. Dropped image (image decompression error)

D. Transition delay between VSP modes

Crater Model Supplementary Figures:

Preimpact-Impact Contingency: Last Updated: 2009-03-09

Nominal preimpact-impact is preimpact-impact-1000k. Rate contingency is preimpact-impact-220k. Comparison between the baseline and contingency is summarized below.

	Baseline preimpact-1000k	Contingency preimpact-220k
VIS	0.82 Hz	0.119 Hz
NIR1	0.41 Hz	0.119 Hz
NIR2	0.41 Hz	0.119 Hz
MIR1	3.00 Hz	0.15 Hz
MIR2	3.00 Hz	0.15 Hz
NSP1	IF for 155 s then	IF for 155 s then
	DM for 60 s then	DM for 60 s then
	HS @ 1.72 Hz	HS @ 1.72 Hz
NSP2	IF for 155 s then	IF for 155 s then
	DM for 60 s then	DM for 60 s then
	HS @ 1.72 Hz	HS @ 1.72 Hz
VSP	0.20 Hz, 100ms, 500ms, 2500ms	0.20 Hz, 100ms, 500ms, 2500ms
TLP	1000 Hz [21 min before FLASH]	1000 Hz [21 min before FLASH]
	Baseline impact-1000k	Contingency impact-220k
	FLASH	FLASH
VIS	Disabled	Disabled
NIR1	2.98 Hz, OPR15	0.5 Hz , OPR15
NIR2	Disabled	Disabled
MIR1	0.50 Hz, Hi Gain	0.10 Hz, Hi Gain
MIR2	0.50 Hz, Hi Gain	0.10 Hz, Hi Gain
NSP1	Flash mode	Flash Mode
NSP2	Hadamard mode, 1.72 Hz	Hadamard mode, 1.72 Hz
VSP	Triplet 2s,2s,2s exposures	Triplet 2s,2s,2s exposures
TLP	1000 Hz	1000 Hz
	CURTAIN	CURTAIN
VIS	0.82 Hz	0.119 Hz
NIRI	0.41 Hz, OPR 6	0.119 Hz , OPR 6
NIR2	0.41 Hz, OPR 6	0.119 Hz, OPR 6
MIR1	3.00 Hz, Hi Gain	0.15 Hz, Hi Gain
MIR2	3.00 Hz, Hi Gain	0.15 Hz, Hi Gain
NSP1	Hadamard mode, 1.72 Hz	Hadamard mode, 1.72 Hz
NSP2	Hadamard mode, 1.72 Hz	Hadamard mode, 1.72 Hz
VSP	0.20 Hz, 100ms, 500ms, 2500ms	0.20 Hz, 100ms, 500ms, 2500ms
TLP	1000k	
MIC	CRATER	CRATER
VIS	Disabled	Disabled
NIRI	Disabled	Disabled
NIR2	0.67 Hz, OPR15	0.1 Hz , OPR15
MIR1	3.00 Hz, Hı Gain	0.6 Hz , Hi Gain
MIR2	3.00 Hz, Hi Gain	0.6 Hz, Hı Gain
NSP1	Hadamard mode, 1.72 Hz	Hadamard mode, 1.72 Hz
NSP2	Hadamard mode, 1.72 Hz	Hadamard mode, 1.72 Hz
VSP	0.50 Hz, 100ms,200ms,400ms	0.50 Hz, 100ms,200ms,400ms
TLP	Off	

Preimpact-Impact-220k Sequence Milestones: Last Updated: 2009-03-09

Start Simulation length: full-length slot: 7 filename: preimpact-220k.cmd

msec	NVM	Msg		min:sec
00000000) 7	ECHO:	Start Sequence	(000:00.00)
00000050) 7	ECHO:	ver impact-220k 2008-11-20	(000:00.05)
00000100) 7	ECHO:	TLM_HSS_RATE :rate 220000	(000:00.10)
00002950) 7	ECHO:	Mode: PREIMPACT 220	(000:02.95)
00217950) 7	ECHO:	MODE: PREIMPACT SLEEP	(003:37.95)
01747350) 7	ECHO:	TLP Activated	(029:07.35)
02947550) 8	ECHO:	Stop Other Sequences	(049:07.55)
02947650) 8	ECHO:	Mode: FLASH 220	(049:07.65)
03004450) 8	ECHO:	Start VSP Exposure	(050:04.45)
03007450) 8	ECHO:	Predicted Centaur impact time	(050:07.45)
03012350) 8	ECHO:	Mode: CURTAIN 220	(050:12.35)
03192350) 8	ECHO:	Mode: CRATER 220	(053:12.35)
03252350) 8	ECHO:	Predicted SSC impact time	(054:12.35)
03549150) 8	ECHO:	Exit IMPACT 220	(059:09.15)

Preimpact-Impact-220k Observation Statistics: Last Updated: 2009-03-09

SIOL:		/		
Filenar	ne:	preimpa	act-220k	.cmd
Elapsed	d Time:	3549250) msec (59.15 min)
		E	PDS Data	
Instrur	nent	Counts	Volume	Kbytes
VIS:		396	396000	
MIR1:	:	694	41640	
MIR2:	:	695	41700	
NIR1:	:	423	846000	
NIR2:	:	432	864000	
NSP1	IF:	15991	1599	
NSP1	HS:	5556	66672	
NSP1	DM:	1202	120	
NSP2	IF:	9863	986	
NSP2	HS:	5666	67992	
NSP2	DM:	1202	120	
VSP	BM:	797	71730	
VSP	SM:	0	0	
TLP:		14450	144	
			E002	Mbrites

5093 Mbytes

7.9 FAULT GUIDELINES

Primary Goals:

1. Provide for key science mode observation in case of inability to command.

Requirements:

- 1. Must be able to run without ground intervention
- 2. Must power all instruments (incl. TLP) and ensure TADA is open

Instruments and Specifications:

1. Same as for Curtain-1000k

Rate/Spec Summary:

1. Same as for Curtain-1000k

Fault-1000k Observational Pattern:

<not tested>

Fault-1000k Sequence Milestones: Last Updated: 2009-03-09

Start Simulation
length: full-length
slot: 0
filename: fault-1000k.cmd

msec	NVM	Msg		min:sec
00000000	0 C	ECHO:	Start Sequence	(000:00.00)
00010100	0 C	ECHO:	Mode: FAULT 1000	(000:10.10)
00600000	0 C	ECHO:	Activate the TLP	(010:00.00)
00610100	0 C	ECHO:	Activate TADA	(010:10.10)
00621250	0 0	ECHO:	Exit FAULT 1000	(010:21.25)

8 POST-CONTACT STATUS REPORTS

After each payload activation, the payload team will be responsible for generating a summary of the payload performance for the mission status briefing. Raw inputs to this summary will be the command sequence checklist and the following telemetry reports:

- 1. Payload Environment Report, which includes
 - a. R6 temperatures
 - b. Payload internal temperatures
 - c. Payload voltage and current
 - d. S/C payload telemetry stats
- 2. Payload operations report, which includes
 - a. Timeline charts
 - b. Downlink margin (expected & actual)
 - c. NIR OPR settings reported
 - d. NIR commanding error counts
 - e. Clock synchronization performance
 - f. Anomaly list

9 **REMAINING WORK**

All prelaunch tuning of the payload command sequences has been finished. If analysis of on-orbit instrument performance indicates that instrument settings should be adjusted for impact observations, then the sequences may be changed slightly and reloaded.