Juno

Software Interface Specification JunoCam Global Map Image (GMI) Standard Data Product

M. Caplinger Malin Space Science Systems, Inc.

Approved by:

Candy Hansen, JunoCam Team Leader

Leslie Lipkaman, MSSS JunoCam Archiving Lead

Dave Gell, JSOC Manager

William Kurth, Juno Archivist

Sue Lavoie, PDS Imaging Node

Version 1.1, November 2017 (formatted November 8, 2017) Juno

Software Interface Specification Junocam Global/Regional Map Image Standard Data Product

M. Caplinger Malin Space Science Systems, Inc.

Approved by:

Candy Hansen, Junocam Team Leader

Leslie Lipkaman, MSSS Juno Archiving Lead

Dave Gell, JSOC Manager

William Kurth, Juno Archivist

10 ar

Sue Lavoie, PDS Imaging Node

November 2013 (formatted November 14, 2013)

Change Log

DATE	SECTIONS CHANGED	DESCRIPTION OF CHANGES	REVISION
11/14/13	Initial Release, Version 1.0		
11/08/17	Signature Page, Change Log, Acronyms and Abbreviations, 1.3, 1.4.4, 2.2, 4.1, 4.2, 4.3, 4.4.2, 5.0, 6.0	Signature Page: added Change Log: added Acronyms and Abbreviations: added 1.3: updated references 1.4.4: section removed from V1.0, section numbers shifted 2.2: section removed from V1.0, section numbers shifted 4.1: section completely changed from V1.0, now Data Processing Levels 4.2: section completely changed from V1.0, now File Naming Convention 4.3: section completely changed from V1.0, now Structure and Organization 4.4.2: section removed from V1.0 5.0: new section added, PDS Archive Volume 6.0: new section added, Appendices A and B	1.1

Contents

1. INTRODUCTION	4
1.1. PURPOSE	
1.2. Scope	
1.3. Applicable Documents	
1.4. FUNCTIONAL DESCRIPTION	
1.4.1. Data Content Summary	
1.4.2. Source and Transfer Method	
1.4.3. Recipients and Utilization	
1.5. Assumptions and Constraints	5
2. ENVIRONMENT	5
2.1. HARDWARE CHARACTERISTICS AND LIMITATIONS	
2.1.1. Special Equipment and Device Interfaces	
2.1.2. Special Setup Requirements	
2.2. FAILURE PROTECTION, DETECTION, AND RECOVERY	5
2.3. End-of-File Conventions	5
3. ACCESS	5
3.1. Access Tools	-
3.2. INPUT/OUTPUT PROTOCOLS	
3.3. TIMING AND SEQUENCING CHARACTERISTICS	
-	
4. DATA PRODUCT OVERVIEW	-
4.1. DATA PROCESSING LEVELS	
4.2. FILE NAMING CONVENTION	
4.3. STRUCTURE AND ORGANIZATION	
4.4.1. Header/Trailer Description Details	
4.4.1. Header/ I fuller Description Details	
5. PDS ARCHIVE VOLUME	
5.1. Archive Structure	9
6. APPENDICES	
APPENDIX A – JUNOCAM KEYWORDS, DEFINITIONS, AND VALID VALUES & ENTRIES	
Appendix B – Archive Volume Structure	

Acronyms and Abbreviations

1. Introduction

1.1. Purpose

This document describes the format of the JunoCam Global Map Image (GMI) Standard Data Product.

1.2. Scope

The format and content specifications in this Software Interface Specification (SIS) apply to all phases of the project for which this product is available.

1.3. Applicable Documents

This SIS is consistent with the following Planetary Data System (PDS) documents:

- 1. Planetary Data System Standards Reference, Version 3.8, JPL D-7669, Part 2, February 27, 2009.
- 2. Planetary Science Data Dictionary Document, JPL D-7116, Rev. F, October 20, 2008.

Additionally, this SIS makes reference to the following documents for technical and background information:

- 3. JUNO Science Operations Center (JSOC) JSOC-IOT Interface Control Document, 12029.02-JSOC_IOT_ICD-01, Rev 4 Chg 0, October 2013.
- 4. Software Interface Specification JunoCam Standard Data Products, M. Caplinger, Version 1.3, August 31, 2016.
- 5. Juno Project Mission Plan, Revision B, JPL D-35556, 29 March 2011.

1.4. Functional Description

1.4.1. Data Content Summary

The JunoCam Global Map Image product is a mosaic of one or more individual JunoCam images. Nominally, one such global product will be produced for each Juno science orbit, covering the north and south polar regions at the intrinsic resolution of JunoCam.

1.4.2. Source and Transfer Method

JunoCam products are produced by the makepds program from the format internally used at the JunoCam Mission Operations Facility (MOF). This program reads a JunoCam image file, extracts some information from its headers, formats and attaches the PDS labels, and appends the image data.

It is expected that there will be two ways to receive JunoCam products: by electronic file transfer from the JunoCam web site (and after archiving, from the Planetary Data System), and (potentially) on some archival medium such as CD-ROM or DVD.

1.4.3. Recipients and Utilization

These products will be available to JunoCam team members, the Juno science community, the planetary science community, and any other interested parties. In general, there is no proprietary period for JunoCam data.

These products will be used for engineering support, direct science analysis, and/or the construction of other science products.

1.5. Assumptions and Constraints

This file consists of calibrated, resampled, and mosaicked image data. These products will be created using the reconstructed position and attitude information available when the product is produced. Updated versions of this product, constructed with better ancillary data, software, or processing will be produced by the JunoCam team on a best-effort basis. The PRODUCT_VERSION_ID keyword will be updated accordingly.

2. Environment

2.1. Hardware Characteristics and Limitations

2.1.1. Special Equipment and Device Interfaces

Interfaces to access either CD-ROM volumes or electronic file transfer are described elsewhere; for example, see the PDS Standards Reference [Ref 1].

2.1.2. Special Setup Requirements

No special setup requirements are needed.

2.2. Failure Protection, Detection, and Recovery

Raw instrument telemetry will be archived in the PDS. Depacketized compressed image data will be archived at the JunoCam MOF, as will the GMI files and any needed ancillary data and intermediate products.

2.3. End-of-File Conventions

End-of-file labeling shall comply with SFDU standards; specifically, fixed-size records are used, the header explicitly contains the record offset of each sub-element of the dataset, and the size of each sub-element can be computed from information in the header.

3. Access

3.1. Access Tools

Existing PDS image display programs can display these files.

3.2. Input/Output Protocols

None identified.

3.3. Timing and Sequencing Characteristics

None.

4. Data Product Overview

4.1. Data Processing Levels

This documentation recognizes both the National Aeronautics and Space Administration (NASA) data processing scheme and the "Committee on Data Management and Computation" (CODMAC) data level numbering system. The JunoCam Global Map products are "NASA Level 1B" (CODMAC – Resampled – Level 4). The following table presents a breakdown of the CODMAC and NASA data processing levels.

NASA	CODMAC	Description
Packet data	Raw - Level 1	Telemetry data stream as received at the ground station, with science and engineering data embedded.
Level 0	Edited - Level 2	Instrument science data (e.g., raw voltages, counts) at full resolution, time ordered, with duplicates and transmission errors removed.
Level 1A	Calibrated - Level 3	Level 0 data that have been located in space and may have been transformed (e.g., calibrated, rearranged) in a reversible manner and packaged with needed ancillary and auxiliary data (e.g., radiances with the calibration equations applied).
Level 1B	Resampled - Level 4	Irreversibly transformed (e.g., resampled, remapped, calibrated) values of the instrument measurements (e.g., radiances, magnetic field strength).
Level 1C	Derived - Level 5	Level 1A or 1B data that have been resampled and mapped onto uniform space-time grids. The data are calibrated (i.e., radiometrically corrected) and may have additional corrections applied (e.g., terrain correction).
Level 2	Derived - Level 5	Geophysical parameters, generally derived from Level 1 data, and located in space and time commensurate with instrument location, pointing, and sampling.
Level 3	Derived - Level 5	Geophysical parameters mapped onto uniform space-time grids.

JunoCam's DATA_SET_IDs for Global Map products contain references to both the CODMAC and NASA data processing levels. See Appendix A for more information.

4.2. File Naming Convention

Each product will have a file name of the form "<id>.IMG", where the ID is not to exceed 36 characters. The ID will start with an alphabetic character and will consist of only alphanumeric characters. Each file name will be unique across all JunoCam data product files.

File names will be of the form:

JNCR_YYYYDDD_OOQNNNNN_VXX.ZZZ

JNC: JunoCam R: RDR product type YYYY: year at the start of image acquisition DDD: day-of-year at the start of image acquisition OO: orbit number Q: map-projected product (P for color map (any combination of the R, G, or B filters), H for methane map) NNNNN: image index within that mission phase V: version XX: version number starting with "01" ZZZ: file extension (can be IMG, LBL)

4.3. Structure and Organization

All JunoCam images must be a multiple of 16 pixels in both width and height. Images are broken up into sub-images (also called fragments), and each fragment is transmitted separately. Raw and predictively compressed images are reconstructed by concatenating all of their image fragments and then processing; transform compressed images are processed a fragment at a time.

A JunoCam data product consists of one image with decompression applied. For each image file, a header (or label in PDS terminology) identifies various properties of the image and contains a file offset to the data portion of the image.

The GMI product consists of two JunoCam images, one from the north pole and one from the south pole, merged into a single, map-projected image in standard PDS uncompressed image format. In addition, each image product has two parts: the data product itself with the extension of "IMG" and a detached label with an extension of "LBL".

The detached label (LBL) file adheres to the standards described in the PDS Standards Reference, Version 3.8, and conforms to the PDS3 format. The only accepted value for PDS_VERSION_ID in the GMI label file is "PDS3".

The following is a sample LBL for a JunoCam GMI color product:

PDS_VERSION_ID = PDS3

/* FILE CHARACTERISTICS */

FILE_NAME	= "JNCR_2016240_01P00000_V01.IMG"
RECORD_TYPE	= FIXED_LENGTH
RECORD_BYTES	= 5760
FILE_RECORDS	= 2880

^IMAGE

/* IDENTIFICATION DATA ELEMENTS */

REFERENCE LATITUDE

SPACECRAFT NAME = JUNO MISSION PHASE NAME = "SCIENCE ORBITS" = JUPITER TARGET NAME = "JNC" INSTRUMENT ID = "JUNO" INSTRUMENT HOST NAME INSTRUMENT NAME = "JUNO EPO CAMERA" = JUNO_JUNOCAM_TEAM PRODUCER ID DATA SET ID = "JUNO-J-JUNOCAM-4-RDR-L1B-V1.0" STANDARD DATA PRODUCT ID = "JUNOCAM-RDR" PROCESSING LEVEL ID = "4" = 2018 - 05 - 16T16:57:49PRODUCT CREATION TIME START TIME = 2016-08-27T11:59:11.588 STOP TIME = 2016-08-27T13:56:23.796 SPACECRAFT CLOCK START COUNT = "525571327**:**208" = "N/A" SPACECRAFT CLOCK STOP COUNT PRODUCT VERSION ID = "01" PRODUCT ID = "JNCR 2016240 01P00000 V01" SOURCE PRODUCT ID = ("JNCE 2016240 01C06162 V01", "JNCE 2016240 01C06186_V02") = ('BLUE', 'GREEN', 'RED') FILTER NAME = "PJ01 Global Map product" RATIONALE DESC /* MAP PROJECTION INFORMATION */ OBJECT = IMAGE MAP PROJECTION ^DATA SET MAP PROJECTION = "DSMAP.CAT" COORDINATE SYSTEM TYPE = "BODY-FIXED ROTATING" COORDINATE SYSTEM NAME = "PLANETOGRAPHIC" MAP PROJECTION ROTATION = "N/A" MAP PROJECTION TYPE = "SIMPLE CYLINDRICAL" = 16 <pixel/degree> MAP RESOLUTION MAP SCALE = 3.750 <km/pixel> = 90.0 MAXIMUM LATITUDE = -90.0= 180.0MINIMUM LATITUDE EASTERNMOST LONGITUDE = 180.0 WESTERNMOST LONGITUDE LINE_PROJECTION_OFFSET = 1440.0SAMPLE_PROJECTION_OFFSET = 2880.0 = 71492.0 <km> A AXIS RADIUS = 71492.0 <km> **B AXIS RADIUS** C AXIS RADIUS = 66854.0 < kmFIRST_STANDARD_PARALLEL = "N/A" SECOND_STANDARD_PARALLEL = "N/A" POSITIVE LONGITUDE DIRECTION = WEST CENTER LATITUDE = 0.0= 0.0CENTER LONGITUDE

= "N/A"

REFERENCE LONGITUDE = "N/A"LINE FIRST PIXEL = 1 SAMPLE FIRST PIXEL = 1 LINE LAST PIXEL = 5760SAMPLE LAST PIXEL = 2880END OBJECT = IMAGE MAP PROJECTION /* TMAGE DATA ELEMENTS */ OBJECT = IMAGE LINES = 2880LINE SAMPLES = 5760SAMPLE TYPE = UNSIGNED INTEGER SAMPLE BITS = 8 = 3 BANDS BAND STORAGE TYPE = BAND SEQUENTIAL SAMPLE BIT MASK = 16 # f f #MD5 CHECKSUM = "debfac8586175d48f58273ec69d3b32b" END OBJECT = IMAGE

END

4.4. Substructure Definition and Format

For JunoCam label file (.LBL) keyword definitions and valid values, see Appendix A.

4.4.1. Header/Trailer Description Details

See above. No trailers are present.

4.5. Data Volume, Size, and Frequency Estimates

Nominally, RGB and Methane global maps at 1/16 degree per pixel will be produced for each mapping orbit from the north and south polar imaging. Each per-orbit total is therefore about 215 megabytes (MB).

5. PDS Archive Volume

5.1. Archive Structure

Every archive delivery contains data for a set period of time. These data are archived in the GLOBAL_MAPS directory. As there will only be one color map and one Methane map per orbit, no sub-directories are necessary.

In addition, there are several static directories and files that will also be delivered with each volume. The structure of these directories and corresponding files can be found in Appendix B.

6. Appendices

Appendix A – JunoCam Keywords, Definitions, and Valid Values & Entries

Keyword	Group	Definition	Valid Values
		The PDS_version_id data element	
		represents the version number of the	
		PDS standards documents that is	
		valid when a data product label is	
		created. Values for the	
		PDS_version_id are formed by	
		appending the integer for the latest	
		version number to the letters 'PDS'.	
PDS_VERSION_ID		Examples: PDS3, PDS4.	PDS3, N/A, NULL, UNK
	FILE		
	CHARACTERISTICS		
		The file_name element provides the	
		location independent name of a file. It	
		excludes node or volume location,	
		directory path names, and version	string (see section 4.2 of
		specification. For JunoCam products,	this document), N/A,
FILE_NAME		extension is .IMG.	NULL, UNK
		The record_type element indicates	
		the record format of a file. Note: In	
		the PDS, when record_type is used in	
		a detached label file it always	
		describes its corresponding detached	
		data file, not the label file itself. For	
		JunoCam products, nearly always	FIXED_LENGTH, N/A,
RECORD_TYPE		FIXED_LENGTH.	NULL, UNK

		The record_bytes element indicates	
		the number of bytes in a physical file	
		record, including record terminators	integer, 0 to n, N/A,
RECORD_BYTES		and separators.	NULL, UNK
		The file_records element indicates the	
		number of physical file records,	
		including both label records and data	
		records. The last record will be	integer, 0 to n, N/A,
FILE_RECORDS		padded with zeros if necessary.	NULL, UNK
		Pointer to the starting record of an	
		image product. For JunoCam	string (see section 4.2 of
		products, nearly always identical to	this document), N/A,
^IMAGE		FILE_NAME with the extension .IMG.	NULL, UNK
	INDENTIFICATION		
	DATA ELEMENTS		
		The spacecraft_name element	
		provides the full, unabbreviated	
SPACECRAFT_NAME		name of a spacecraft.	JUNO, N/A, NULL, UNK
		The mission_phase_name element	SCIENCE ORBITS,
		provides the commonly used	DEORBIT, N/A, NULL,
MISSION_PHASE_NAME		identifier of a mission phase.	UNK
		The target_name element identifies a	
		target. The target may be a planet,	
		satellite, ring, region, feature, asteroid	JUPITER, N/A, NULL,
TARGET_NAME		or comet.	UNK
		The instrument_id element provides	
		an abbreviated name or acronym,	
INSTRUMENT_ID		which identifies an instrument.	JNC, N/A, NULL, UNK
		The instrument_host_name element	· · · · · · · · · · · · · · · · · · ·
		provides the full name of the host on	
INSTRUMENT_HOST_NAME		which an instrument is based.	JUNO, N/A, NULL, UNK
		The instrument_name element	· · · · ·
		provides the full name of an	JUNO EPO CAMERA, N/A,
INSTRUMENT_NAME		instrument.	NULL, UNK

	The producer_id element provides a	
	short name or acronym for the	
	producer or producing team/group of	JUNO_JUNOCAM_TEAM,
PRODUCER_ID	a dataset.	N/A, NULL, UNK
	The data_set_id element is a unique	
	alphanumeric identifier for a data set	
	or a data product. The data_set_id	
	value for a given data set or product	
	is constructed according to flight	
	project naming conventions. In most	
	cases the data_set_id is an	
	abbreviation of the	
	data_set_name. Note: In the PDS, the	
	values for both data_set_id and	
	data_set_name are constructed	JUNO-J-JUNOCAM-4-
	according to standards outlined in	RDR-L1B_V1.0, N/A,
DATA_SET_ID	the Standards Reference.	NULL, UNK
	The STANDARD_DATA_PRODUCT_ID	,
	element is used to link a data product	
	(file) to a standard data product	
	(collection of similar files) described	
	within software interface	
	specification document for a	JUNOCAM-RDR, N/A,
STANDARD_DATA_PRODUCT_ID	particular data set.	NULL, UNK
	The processing_level_id element	
	identifies the processing level of a set	
	of data according to the eight-level	
	CODMAC standard. For JunoCam	
	Global Map images, it will typically be	
PROCESSING_LEVEL_ID	4.	4, N/A, NULL, UNK
	The product_creation_time element	T, IV/A, IVULL, UIVIX
	defines the UTC system format time	YYYY-MM-DDThh:mm:ss,
DRODUCT CREATION TIME	5	-
PRODUCT_CREATION_TIME	when a product was created.	N/A, NULL, UNK

		1
	The start_time element provides the	
	date and time of the beginning of an	
	event or observation (whether it be a	
	spacecraft, ground-based, or system	
	event) in UTC. This time will be the	YYYY-MM-
	start time of the first frame of a	DDThh:mm:ss.fff, N/A,
START_TIME	JunoCam image.	NULL, UNK
	The stop_time element provides the	
	date and time of the end of an	
	observation or event (whether it be a	
	spacecraft, ground-based, or system	
	event) in UTC. This time will be the	YYYY-MM-
	start time of the last frame of a	DDThh:mm:ss.fff, N/A,
STOP_TIME	JunoCam image.	NULL, UNK
-	The spacecraft_clock_start_count	
	element provides the value of the	
	spacecraft clock at the actual start of	
	image acquisition. There may be	
	small inconsistencies with	
	START_TIME due to varying	
	correlation between UTC and the	
	spacecraft clock. For purposes of data	
	analysis the spacecraft clock value	
	should be used. The format of this	
	field is compatible with the NAIF	
	Toolkit software where s = seconds	
	converted from the clock's coarse	
	converted from the clock's coarse counter and m = seconds converted	
	from the clock's fine counter (up to	ssssssss:m[m][m], N/A,
SPACECRAFT_CLOCK_START_COUNT	three decimals).	NULL, UNK

	The measure the share state is a state	
	The spacecraft_clock_stop_count	
	element provides the value of the	
	spacecraft clock at the end of a time	
	period of interest. For JunoCam, this	
	value is not applicable because the	
	timing of a JunoCam image, once	
	started, is independent of the	
SPACECRAFT_CLOCK_STOP_COUNT	spacecraft clock.	N/A, NULL, UNK
	The first_product_id data element	
	indicates the product_id that appears	
	in the label of the first data product	
PRODUCT_VERSION_ID	on an archive medium.	string, N/A, NULL, UNK
	The product_id data element	
	represents a permanent, unique	
	identifier assigned to a data product	string (see section 4.2 of
	by its producer. No extension is	this document), N/A,
PRODUCT_ID	included.	NULL, UNK
	The source_product_id data element	string array (see section
	identifies a product, or products, used	4.2 of this document),
SOURCE_PRODUCT_ID	as input to create a new product.	N/A, NULL, UNK
	The filter_name element provides the	
	commonly-used name of the	
	instrument filter through which an	
	image or measurement was acquired	
	or which is associated with a given	
	instrument mode. This is a string	
	array up to four values in length with	
	nominal values of RED, GREEN, BLUE,	string array, N/A, NULL,
FILTER_NAME	and/or METHANE.	UNK
110101.111110		01111

L, UNK
, UNIX
NTTT 1
, NULL,
ΓATING,
,
., NU

	m1 11	
	The coordinate_system_name	
	element provides the full name of the	
	coordinate system to which the state	
	vectors are referenced. PDS has	
	currently defined body-fixed rotating	
	coordinate systems. The	
	Planetographic system has an origin	PLANETOGRAPHIC, N/A,
COORDINATE_SYSTEM_NAME	at the center of mass of the body.	NULL, UNK
	The map_projection_rotation element	
	provides the clockwise rotation, in	
	degrees, of the line and sample	
	coordinates with respect to the map	
MAP_PROJECTION_ROTATION	projection origin.	N/A, NULL, UNK
	The map_projection_type element	
	identifies the type of projection	SIMPLE CYLINDRICAL,
MAP_PROJECTION_TYPE	characteristic of a given map.	N/A, NULL, UNK
	The map_resolution element	
	identifies the scale of a given map in	integer, 0 to n, N/A,
MAP_RESOLUTION	pixel/degrees.	NULL, UNK
	The map_scale element identifies the	
	scale of a given map. The scale is	
	defined as the ratio of the actual	
	distance between two points on the	
	surface of the target body to the	
	distance between the corresponding	
	points on the map; reported in	
MAP_SCALE	km/pixel.	float, N/A, NULL, UNK
	The maximum_latitude element	
	specifies the northernmost latitude of	
	a spatial area, such as a map, mosaic,	
MAXIMUM_LATITUDE	bin, feature, or region.	float, N/A, NULL, UNK

	m1	
	The minimum_latitude element	
	specifies the southernmost latitude of	
	a spatial area, such as a map, mosaic,	
MINIMUM_LATITUDE	bin, feature, or region	float, N/A, NULL, UNK
	The easternmost (rightmost)	
	longitude of a spatial area (e.g.,a map,	
	mosaic, bin, feature or region) is the	
	maximum numerical value of	
	longitude unless it crosses the Prime	
EASTERNMOST_LONGITUDE	Meridian.	float, N/A, NULL, UNK
	For Planetographic coordinates in	
	which longitude increases toward the	
	west (prograde rotator), the	
	westernmost (leftmost) longitude of a	
	spatial area (e.g., a map, mosaic, bin,	
	feature or region) is the maximum	
	numerical value of longitude unless it	
WESTERNMOST_LONGITUDE	crosses the Prime Meridian.	float, N/A, NULL, UNK
	The line_projection_offset element	
	provides the line offset value of the	
	map projection origin position from	
	the line and sample 1,1 (line and	
	sample 1,1 is considered the upper	
	left corner of the digital array). Note:	
	that the positive direction is to the	
LINE_PROJECTION_OFFSET	right and down.	float, N/A, NULL, UNK
	The sample_projection_offset element	
	provides the sample offset value of	
	the map projection origin position	
	from line and sample 1,1 (line and	
	sample 1,1 is considered the upper	
	left corner of the digital array). Note:	
	that the positive direction is to the	
SAMPLE_PROJECTION_OFFSET	right and down.	float, N/A, NULL, UNK

	The a_axis_radius element provides	
	the value of the semimajor axis of the	
	ellipsoid that defines the approximate	
	shape of a target body. 'A' is usually	
	in the equatorial plane. For JunoCam,	
A_AXIS_RADIUS	the units are km.	float, N/A, NULL, UNK
	The b_axis_radius element provides	
	the value of the intermediate axis of	
	the ellipsoid that defines the	
	approximate shape of a target body.	
	'B' is usually in the equatorial plane.	
B_AXIS_RADIUS	For JunoCam, the units are km.	float, N/A, NULL, UNK
	The c_axis_radius element provides	
	the value of the semiminor axis of the	
	ellipsoid that defines the approximate	
	shape of a target body. 'C' is normal	
	to the plane defined by 'A' and 'B'.	
C_AXIS_RADIUS	For JunoCam, the units are km.	float, N/A, NULL, UNK
	The first_standard_parallel element is	
	used in Conic projections. If a Conic	
	projection has a single standard	
	parallel, then the	
	first_standard_parallel is the point of	
	tangency between the sphere of the	
FIRST_STANDARD_PARALLEL	planet and the cone of the projection.	N/A, NULL, UNK
	If there are two standard parallels	
	(first_standard_parallel,	
	second_standard_parallel), these	
	parallel are the intersection lines	
	between the sphere of the planet and	
	the cone of the projection. The	
	map_scale is defined at the standard	
SECOND_STARDARD_PARALLEL	parallels.	N/A, NULL, UNK
	r	

	The positive_longitude_direction	
	element identifies the direction of	
	longitude (e.g. EAST, WEST) for a	
	planet. The IAU definition for	
	direction of positive longitude is	
	adopted. Typically, for planets with	
	prograde rotations, positive longitude	
POSITIVE_LONGITUDE_DIRECTION	direction is to the WEST.	WEST, N/A, NULL, UNK
	The center_latitude element provides	
	a reference latitude for certain map	
CENTER_LATITUDE	projections.	float, N/A, NULL, UNK
	The center_longitude element	
	provides a reference longitude for	
CENTER_LONGITUDE	certain map projections.	float, N/A, NULL, UNK
	The reference latitude element	
	provides the new zero latitude in a	
	rotated spherical coordinate system	
	that was used in a given	
REFERENCE_LATITUDE	map_projection_type.	N/A, NULL, UNK
	The reference_longitude element	, , - ,
	defines the zero longitude in a	
	rotated spherical coordinate system	
	that was used in a given	
REFERENCE_LONGITUDE	map_projection_type.	N/A, NULL, UNK
	The line_first_pixel element provides	
	the line index for the first pixel that	
	was physically recorded at the	integer, 1 to n, N/A,
LINE_FIRST_PIXEL	beginning of the image array.	NULL, UNK
	The sample_first_pixel element	
	provides the sample index for the	
	first pixel that was physically	
	recorded at the beginning of the	integer, 1 to n, N/A,
CAMDLE EIDST DIVEL	0 0	NULL, UNK
SAMPLE_FIRST_PIXEL	image array.	NULL, UNK

		The line_last_pixel element provides the line index for the last pixel that	
LINE_LAST_PIXEL		was physically recorded at the end of the image array.	integer, 1 to n, N/A, NULL, UNK
SAMPLE_LAST_PIXEL		The sample_last_pixel element provides the sample index for the last pixel that was physically recorded at the end of the image array.	integer, 1 to n, N/A, NULL, UNK
	IMAGE DATA ELEMENTS		
LINES		The lines element indicates the total number of data instances along the vertical axis of an image, or, the number of lines in the decompressed image.	integer, 1 to n, N/A, NULL, UNK
LINE_SAMPLES		The line_samples element indicates the total number of data instances along the horizontal axis of an image, or, the number of samples per line in the decompressed image.	integer, 1 to n, N/A, NULL, UNK
SAMPLE_TYPE		The sample_type element indicates the data storage representation of sample value. For JunoCam, nearly always UNSIGNED_INTEGER.	UNSIGNED_INTEGER, N/A, NULL, UNK

	The sample_bits element indicates	
	the stored number of bits, or units of	
	binary information, contained in a	
	line_sample value; for the JunoCam	
	EDR product, always 8, and for the	
	JunoCam RDR product, always 16.	
	Additionally, for the RDR product, the	
	pixel value is normalized such that a	
	value of 10000 would be produced	
	for a white Lambertian target with an	
	incidence angle of 0 at a solar	
	distance of the target at the time of	
SAMPLE_BITS	imaging.	8, 16, N/A, NULL, UNK
	The BANDS element indicates the	
	number of bands in an image or other	integer, 1 to n, N/A,
BANDS	object.	NULL, UNK
	The band_storage_type element	
	indicates the storage sequence of	
	lines, samples and bands in an image.	
	The values describe, for example,	
	how different samples are	
	interleaved in image lines, or how	
	samples from different bands are	BAND_SEQUENTIAL,
BAND_STORAGE_TYPE	arranged sequentially.	N/A, NULL, UNK
	The sample_bit_mask element	16#ff#, 16#ffff#, N/A,
SAMPLE_BIT_MASK	identifies the active bits in a sample.	NULL, UNK
	The MD5 algorithm takes as input a	
	file (message) of arbitrary length and	
	produces as output a 128-bit	
	'fingerprint' or 'message digest' of the	
	input. This field will be used for data	
MD5_CHECKSUM	validation.	string, N/A, NULL, UNK

Appendix B – Archive Volume Structure

The following is the PDS directory structure for the JunoCam archive volume.

```
| -- AAREADME.TXT
| -- CATALOG
     | -- CATINFO.TXT
     | -- DSMAP.CAT
     | -- JNC EDR IMG DS.CAT
     | -- JNC GLOBAL MAP DS.CAT
     | -- JNC INST.CAT
     | -- JNC PERSON.CAT
     | -- JNC RDR IMG DS.CAT
     | -- JNC REF.CAT
     | -- JUNO INSTHOST.CAT
     | -- JUNO MISSION.CAT
     | -- JUNO REF.CAT
| -- DATA
     | -- EDR
           | -- CRUISE
           | -- EFB
           | -- JUPITER
               | -- ORBIT ##
     | -- RDR
           | -- CRUISE
           | -- EFB
           | -- JUPITER
                | -- ORBIT ##
     | -- GLOBAL MAPS
| -- DOCUMENT
     | -- DOCINFO.TXT
     | -- JUNO JNC EDR RDR DPSIS.HTM
     | -- JUNO JNC EDR RDR DPSIS.LBL
     | -- JUNO JNC EDR RDR DPSIS.PDF
     | -- JUNO JNC GLOBAL MAP SIS.HTM
     | -- JUNO JNC GLOBAL MAP SIS.LBL
     | -- JUNO JNC GLOBAL MAP SIS.PDF
| -- ERRATA.TXT
-- INDEX*
| -- VOLDESC.CAT
```

* Directory and subsequent files will be provided by JSOC.