Titan Scatterometry Rev 37

R. West

November 28, 2006

- Sequence: s27
- Rev: 037
- Observation Id: ti_037_2
- Target Body: Titan

1 Introduction

This memo describes one of the Cassini RADAR activities for the s27 sequence of the Saturn Tour. A sequence design memo provides the science context of the scheduled observations, an overview of the pointing design, and guidelines for preparing the RADAR IEB.

This IEB is for a Titan distant scatterometer observation. Distant Titan observations usually occur within 36 hours of a Titan flyby, and are used as a global calibration measurement which can be compared with Earth based observations. A nearly three hour warmup occurs first using the parameters shown in table 4.

2 CIMS and Division Summary

CIMS ID	Start	End	Duration	Comments
037OT_SOUTHWARM001_RIDER	2007-014T13:34:00	2007-014T16:04:00	02:30:0.0	Warmup for calibra-
				tion and science data
				collection.
037TLSOUTHSCAT001_PRIME	2007-014T16:04:00	2007-014T17:19:00	01:15:0.0	Obtain distant Titan
				radiometer science
				and calibration data.
				One of a set that
				provides coverage of
				Titan southern lati-
				tude variation along
				with some obtainable
				associated longitude
				variation.

Table 1: ti_037_2 CIMS Request Sequence

Division	Name	Start	Duration	Data Vol	Comments
а	distant_warmup	00:00:00	02:26:0.0	2.2	Warmup
b	distant_radiometer	02:26:0.0	00:04:0.0	0.2	Off-target radiometer
					(auto-rad steps)
с	distant_radiometer	02:30:0.0	00:15:0.0	0.9	Multi-mode, attenuator
					walking, on/off-target, rcv
					only compressed
d	distant_radiometer	02:45:0.0	00:02:0.0	0.1	radiometer fill
e	distant_scatterometer	02:47:0.0	00:10:24.0	121.7	Scatterometer target-center
					stare with tone
f	distant_radiometer	02:57:24.0	00:15:36.0	0.9	Multi-mode, attenuator
					walking, on/off-target, rcv
					only compressed
g	distant_radiometer	03:13:0.0	00:15:0.0	0.9	Closing radiometry
h		03:28:0.0	00:07:0.0	0.4	
Total				127.3	

Table 2: Division summary. Data volumes (Mbits) are estimated from maximum data rate and division duration.

Div	Alt (km)	Slant range (km)	B3 Size (target dia)	B3 Dop. Spread (Hz)
а	563866	off target	0.71	off target
b	608688	off target	0.77	off target
с	609907	off target	0.77	off target
d	614474	614474	0.77	981
e	615082	615082	0.77	982
f	618243	618243	0.78	989
g	622979	622979	0.78	999
h	627525	off target	0.79	off target

Table 3: Division geometry summary. Values are computed at the start of each division. B3 Doppler spread is for two-way 3-dB pattern. B3 size is the one-way 3-dB beamwidth

Name	Nominal	Actual	Mismatch	Comments
mode	radiometer	radiometer	no	
start_time (min)	varies	0.0	no	
end_time (min)	varies	146.0	no	
time_step (s)	varies	2700.0	no	Used by radiome-
				ter only modes -
				saves commands
bem	00100	00100	no	
baq	don't care	5	no	
csr	6	6	no	6 - Radiometer
				Only Mode
noise_bit_setting	don't care	4.0	no	
dutycycle	don't care	0.38	no	
prf (Hz)	don't care	1000	no	
tro	don't care	0	no	
number_of_pulses	don't care	8	no	
n_bursts_in_flight	don't care	1	no	
percent_of_BW	don't care	100.0	no	
auto_rad	on	on	no	
rip (ms)	34.0	34.0	no	
max_data_rate	0.248	0.248	no	Kbps - set for
				slowest burst pe-
				riod
interleave_flag	off	off	no	
interleave_duration (min)	don't care	10.0	no	

Table 4: ti_037_2 Div a distant_warmup block

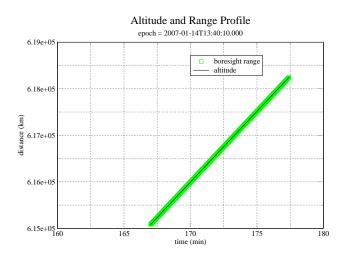


Figure 1: Div e: Altitude and range to the boresight point

Each RADAR observation is represented to the project by a set of requests in the Cassini Information Management System (CIMS). The CIMS database contains requests for pointing control, time, and data volume. The CIMS requests show a high-level view of the sequence design.

The CIMS requests form the basis of a pointing design built using the project pointing design tool (PDT). The details of the pointing design are shown by the PDT plots on the corresponding tour sequence web page. (See https://cassini.jpl.nasa.gov/radar.) The RADAR pointing sequence is ultimately combined with pointing sequences from other instruments to make a large merged c-kernel. C-kernels are files containing spacecraft attitude data.

A RADAR tool called RADAR Mapping and Sequencing Software (RMSS) reads the merged c-kernel along with other navigation data files, and uses these data to produce a set of instructions for the RADAR observation. The RADAR instructions are called an Instrument Execution Block (IEB). The IEB is produced by running RMSS with a radar config file that controls the process of generating IEB instructions for different segments of time. These segments of time are called divisions with a particular behavior defined by a set of division keywords in the config file. Table 2 shows a summary of the division. Each division table shows a set of nominal parameters that are determined by the operating mode (eg., distant scatterometry, SAR low-res inbound). The actual division parameters from the config file are also shown, and any meaningful mismatches are flagged.

3 Receive Only Engineering Test Measurements

Div's C and F are place holders for manually placed receive only data that will survey attenuator settings in various modes. These blocks of instructions are placed in distant icy satellite observations if data volume and pointing permit. They will improve calibration of the radar in all modes. Div's C and F cover the turn off of and onto the target so there is off-target and on-target receive only data available. All of the receive only data is collected in compressed mode to get more integration time. The PRF and number of pulses are chosen to fill the science data buffer. These parameters give the best performance possible from the compressed mode.

4 Div E: Titan Scatterometry

Figures 1 and 2 show the pointing design for the scatterometry stare from the merged ckernel. The angular size of the target is about 8.3 mrad during this division. The beam 3 beamwidth is 6 mrad. The division parameters for the tone target integration divisions are shown in table 5.

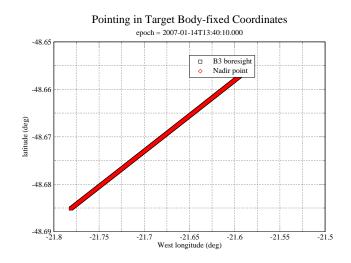


Figure 2: Div e: Stare in target body-fixed coordinates

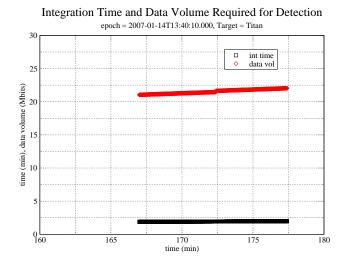


Figure 3: Scatterometry Div e: Detection integration time required for a single point detection using optimal chirp bandwidth

Name	Nominal	Actual	Mismatch	Comments
mode	scatterometer	scatterometer	no	
start_time (min)	varies	167.0	no	
end_time (min)	varies	177.4	no	
time_step (s)	don't care	12.0	no	Used when BIF >
				1, otherwise set
				by valid time cal-
				culation
bem	00100	00100	no	
baq	5	5	no	
csr	0	0	no	0 - normal op- eration with fixed attenuator set to match Phoebe for easier cross-calibration
noise_bit_setting	4.0	4.0	no	Scat signal set higher than ALT/SAR
dutycycle	0.70	0.70	no	
prf (Hz)	varies	1953	no	Set to cover doppler spread and to allow CSF = integer multiple
tro	6	6	no	6 - allows for some noise only data in time do- main
number_of_pulses	varies	120	no	depends on PRF choice (can have more shorter pulses)
n_bursts_in_flight	varies	7	no	Used to increase PRF and data rate at long range
percent_of_BW	0.0	0.0	no	
auto_rad	on	on	no	
rip (ms)	34.0	34.0	no	
max_data_rate	200.000	195.000	yes	Kbps - determines burst period
interleave_flag	off	off	no	
interleave_duration (min)	don't care	10.0	no	

Table 5: ti_037_2 Div e distant_scatterometer block

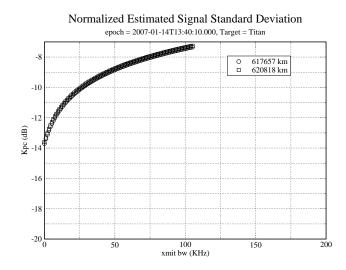


Figure 4: Div e: Normalized estimated signal standard deviation for a disk integrated observation using optimal chirp bandwidth and assuming all the bursts occur at minimum range, and 15 minutes away from minimum range.

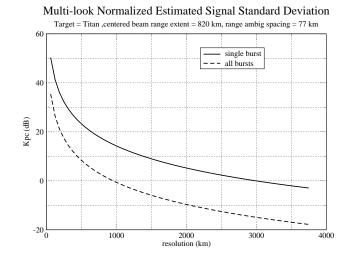


Figure 5: Div e: Normalized estimated signal standard deviation for a range/doppler cell as a function of resolution. Range/doppler resolution elements are both set equal to the specified resolution. Results are shown for a single burst, and for all the bursts in this division. Calculations are performed using the geometry at the start of the division. The presence of ambiguities are not shown.

Name	Nominal	Actual	Mismatch	Comments
mode	radiometer	radiometer	no	
start_time (min)	varies	193.0	no	
end_time (min)	varies	208.0	no	
time_step (s)	varies	600.0	no	Used by radiome-
				ter only modes
bem	00100	00100	no	
baq	don't care	5	no	
csr	6	6	no	
noise_bit_setting	don't care	4.0	no	
dutycycle	don't care	0.38	no	
prf (Hz)	don't care	1000	no	
tro	don't care	6	no	
number_of_pulses	don't care	8	no	
n_bursts_in_flight	don't care	1	no	
percent_of_BW	don't care	100.0	no	
auto_rad	on	on	no	
rip (ms)	34.0	34.0	no	starting value for
				auto-rad
max_data_rate	0.992	0.992	no	1 Kbps - 1 s burst
				period which is
				adequate for slow
				radiometer scans
interleave_flag	off	off	no	
interleave_duration (min)	don't care	10.0	no	

Table 6: ti_037_2 Div g	distant_radiometer block
-------------------------	--------------------------

4.1 Scatterometer Performance

The detection performance is shown in figures 3, 4, and 5. Figure 5 shows that range processing is not possible due to high K_{pc} . Disk integrated results should be very stable.

The maximum doppler spread in Div e is 989 Hz which comes from rotation and spacecraft motion. The PRF needs to be higher than the doppler spread to support potential range-doppler processing, and is set by division parameter to 1953 Hz. With this PRF, the range amiguity spacing is 77 km while the target body is 2575 km in radius. The range-spread of the beam depends on where it is pointed. For target centered pointing the cosine law can be applied to solve the geometry. At 615082 km range, the range-spread is 820 km.

5 Div G: Radiometry

There is not enough time for radiometry raster scans in this observation, so the on and off target radiometry comes during the stare and during the turn off of the target at the end. This data along with the internal reference load data will be used to calibrate the radiometer. The radiometer calibration also contributes to the scatterometer calibration. Division parameters for the radiometry are shown in table 6

6 Revision History

1. Nov 28, 2006: Initial Release

7 Acronym List

ALT	Altimeter - one of the radar operating modes
BAQ	Block Adaptive Quantizer
CIMS	Cassini Information Management System - a database of observations
Ckernel	NAIF kernel file containing attitude data
DLAP	Desired Look Angle Profile - spacecraft pointing profile designed for optimal SAR performance
ESS	Energy Storage System - capacitor bank used by RADAR to store transmit energy
IEB	Instrument Execution Block - instructions for the instrument
ISS	Imaging Science Subsystem
IVD	Inertial Vector Description - attitude vector data
IVP	Inertial Vector Propagator - spacecraft software, part of attitude control system
INMS	Inertial Neutral Mass Spectrometer - one of the instruments
NAIF	Navigation and Ancillary Information Facility
ORS	Optical Remote Sensing instruments
PDT	Pointing Design Tool
PRI	Pulse Repetition Interval
PRF	Pulse Repetition Frequency
RMSS	Radar Mapping Sequencing Software - produces radar IEB's
SAR	Synthetic Aperture Radar - radar imaging mode
SNR	Signal to Noise Ratio
SOP	Science Operations Plan - detailed sequence design
SOPUD	Science Operations Plan Update - phase of sequencing when SOP is updated prior to actual sequencing
SSG	SubSequence Generation - spacecraft/instrument commands are produced
SPICE	Spacecraft, Instrument, C-kernel handling software - supplied by NAIF to use NAIF kernel files.
TRO	Transmit Receive Offset - round trip delay time in units of PRI
	× *