RADAR Titan Flyby during S46/T49

R. West, C. Veeramachaneni

February 25, 2009

• Sequence: s46

• Rev: 097

Observation Id: t49Target Body: Titan

• Data Take Number: 177

• PDT Config File: S46_ssup_psiv1_080929_pdt.cfg

SMT File: S46_SMT_080923.rpt

• PEF File: z0460c.pef

1 Introduction

This memo describes the Cassini RADAR activities for the T49 Titan flyby. This SAR data collection occurs during the S46 sequence of the Saturn Tour. This is almost a full radar pass with missing inbound scatterometry and radiometry. The SAR profile is pushbroomed on the inbound side. A sequence design memo provides the science context of the scheduled observations, an overview of the pointing design, and guidlines for preparing the RADAR IEB.

2 CIMS and Division Summary

CIMS ID	Start	End	Duration	Comments
097TI_T49WARMUP001_RIDER	2008-356T09:59:52	2008-356T12:35:52	02:36:0.0	Warmup for T49
097TI_T49INSAR001_PRIME	2008-356T12:35:52	2008-356T12:50:52	00:15:0.0	
097TI_T49CAALT001_PRIME	2008-356T12:50:52	2008-356T12:55:52	00:05:0.0	
097TI_T49OUTSAR001_PRIME	2008-356T12:55:52	2008-356T13:17:52	00:22:0.0	

Table 1: t49 CIMS Request Sequence

Each RADAR observation is represented to the project by a set of requests in the Cassini Information Management System (CIMS). The CIMS database contains requests for pointing control, time, and data volume. The CIMS requests show a high-level view of the sequence design. Table 1 shows the CIMS request summary for this observation. Although the CIMS requests show Low-SAR intervals, in reality the radar will be operated in Hi-SAR mode through most of this flyby.

Division	Name	Start	Duration	Data Vol	Comments
a	Warmup	-3:00:0.0	02:41:0.0	9.6	Warmup
b	standard_sar_hi	-0:19:0.0	00:00:48.0	1.9	Hi-SAR Turn transition,
					beam 3 only
c	standard_sar_pingpong	-0:18:12.0	00:02:12.0	31.2	Inbound ping-pong
d	standard_sar_hi	-0:16:0.0	00:06:24.0	90.6	Inbound startdard Hi-SAR
e	standard_sar_hi	-0:09:36.0	00:01:4.0	2.6	Hi-SAR Turn transition,
	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3				beam 3 only
f	standard_scatterometer_inbound	-0:08:32.0	00:00:2.0	0.3	Atmospheric Probe with
					Chirp
g	standard_scatterometer_inbound	-0:08:30.0	00:00:2.0	0.3	Atmospheric Probe with
8					Tone
h	standard_altimeter_inbound	-0:08:28.0	00:04:10.0	57.0	Inbound altimetry
i	standard_scatterometer_inbound	-0:04:18.0	00:00:2.0	0.3	Atmospheric Probe with
1	standard_scatterometer_mooding	-0.04.16.0	00.00.2.0	0.5	Chirp
j	standard_scatterometer_inbound	-0:04:16.0	00:00:2.0	0.3	Atmospheric Probe with
J	standard_scatterometer_moound	-0.04.10.0	00.00.2.0	0.3	Tone
1		0.04.14.0	00.01.56.0	11.6	
k	standard_sar_hi	-0:04:14.0	00:01:56.0	11.6	Hi-SAR Turn transition,
		0.02.10.0	00.10.10.0	250.1	beam 3 only
1	standard_sar_hi	-0:02:18.0	00:18:18.0	259.1	Hi-SAR Main Swath
m	standard_sar_pingpong	00:16:0.0	00:03:18.0	46.7	Outbound ping-pong
n	standard_sar_hi	00:19:18.0	00:01:0.0	2.4	Hi-SAR Turn transition,
					beam 3 only
0	standard_altimeter_outbound	00:20:18.0	00:09:42.0	17.5	Outbound altimetry
p	standard_scatterometer_outbound	00:30:0.0	00:01:0.0	1.8	Outbound scatterometer
					raster
q	scatterometer_imaging	00:31:0.0	00:05:15.0	46.6	Outbound scatterometer
					imaging
r	scatterometer_imaging	00:36:15.0	00:04:21.0	17.0	Outbound scatterometer
					imaging
S	scatterometer_imaging	00:40:36.0	00:02:12.0	8.6	Outbound scatterometer
					imaging
t	scatterometer_imaging	00:42:48.0	00:05:54.0	23.0	Outbound scatterometer
					imaging
u	standard_scatterometer_outbound	00:48:42.0	00:00:48.0	1.4	Outbound scatterometry
					during turn to alt
V	standard_altimeter_outbound	00:49:30.0	00:21:30.0	38.7	Outbound altimetry
W	standard_sar_low	01:11:0.0	00:00:15.0	1.4	Outbound SAR-Low nadir
					cal
X	standard_sar_hi	01:11:15.0	00:00:15.0	1.4	Outbound SAR-Hi nadir
A	Starteard Bar Life	01.11.13.0	00.00.13.0	1.1	cal
y	standard_scatterometer_outbound	01:11:30.0	00:00:15.0	1.1	Outbound scatterometry
y	standard_scatterometer_butbound	01.11.50.0	00.00.13.0	1.1	raster and nadir cal
Z	standard_scatterometer_outbound	01:11:45.0	00:41:15.0	74.2	Outbound scatterometry
Z	standard_scatterometer_outbound	01.11.43.0	00.41.13.0	74.2	raster
lbrace	standard_scatterometer_outbound	01:53:0.0	00:02:0.0	3.6	Outbound scatterometry
iorace	Standard_Scatteroineter_Outboulld	01.55.0.0	00.02.0.0	3.0	raster
whom	standard saattaramatan sutha	01:55:0.0	00:03:54.0	7.0	
vbar	standard_scatterometer_outbound	01:55:0.0	00:03:34.0	7.0	•
ule ·	standard as disto	01.50.540	02,21,60	12.6	raster
rbrace	standard_radiometer_outbound	01:58:54.0	03:31:6.0	12.6	Outbound radiometry
TD. 4 1				7000	scans
Total				769.6	

Table 2: Division summary. Data volumes (Mbits) are estimated from maximum data rate and division duration.

Div	Alt (km)	Slant range (km)	B3 Size (target dia)	B3 Dop. Spread (Hz)
a	61468	off target	0.08	off target
b	5168	off target	0.01	off target
с	4913	5080	0.01	1286
d	4225	4309	0.01	1416
e	2400	2452	0.01	1933
f	2137	2137	0.01	2040
g	2129	2129	0.01	2044
g h	2121	2121	0.01	2047
i	1301	1301	0.00	2479
j	1296	1296	0.00	2483
k	1291	1291	0.00	2486
1	1068	1194	0.00	2638
m	4225	4309	0.01	1416
n	5264	5378	0.01	1229
0	5586	5586	0.01	1181
р	8819	8819	0.01	849
q	9159	9285	0.01	825
r	10959	11276	0.02	717
S	12463	13152	0.02	647
t	13226	13864	0.02	617
u	15280	15474	0.02	548
V	15559	15559	0.02	540
W	23092	23092	0.03	390
X	23180	23180	0.03	388
у	23268	23268	0.03	387
Z	23356	23356	0.03	386
lbrace	37873	38954	0.05	265
vbar	38578	39635	0.05	262
rbrace	39951	41244	0.05	255

Table 3: Division geometry summary. Values are computed at the start of each division. B3 Doppler spread is for two-way 3-dB pattern. B3 size is the one-way 3-dB beamwidth

The CIMS requests form the basis of a pointing design built using the project pointing design tool (PDT). The details of the pointing design are shown by the PDT plots on the corresponding tour sequence web page. (See https://cassini.jpl.nasa.gov/radar.) The RADAR pointing sequence is ultimately combined with pointing sequences from other instruments to make a large merged c-kernel. C-kernels are files containing spacecraft attitude data.

A RADAR tool called RADAR Mapping and Sequencing Software (RMSS) reads the merged c-kernel along with other navigation data files, and uses these data to produce a set of instructions for the RADAR observation. The RADAR instructions are called an Instrument Execution Block (IEB). The IEB is produced by running RMSS with a radar config file that controls the process of generating IEB instructions for different segments of time. These segments of time are called divisions with a particular behavior defined by a set of division keywords in the config file. Table 2 shows a summary of the divisions used in this observation. Table 3 shows a summary of some key geometry values for each division.

3 Overview

T49 has one outbound high altitude imaging segment as well as a usual outbound scatterometry scan segment. Outbound Hi-SAR consists of two scan lines. This observation starts with a south polar SAR pass, switching to altimetry and then back to imaging crossing T8, reaching T21 then switching to regular altimetry. The Hi-SAR scan is laid next to T21 followed by outbound scatterometry and radiometry.

At either end of closest approach altimetry, two short atmospheric probe observations are inserted. Also, at the end of the outbound high altitude imaging segment, the spacecraft returns to nadir pointing and some calibration observations are inserted in all 4 modes to collect data useful for radiometric cross-calibration.

4 Mode Specific Operation and Performance

Many details of standard radar sequencing during the 4 main modes (Radiometry, Scatterometry, Altimetry, and SAR) have been discussed in previous sequence memos for prior observations. Refer to these for details. Some selected performance highlights are illustrated in figures and explained in the following subsections.

4.1 High Altitude Imaging

The high altitude imaging segments are designed to optimize range-doppler ambiguities, resolution, number of looks and noise-equivalent cross-section. These segments push against the 7% duty cycle limit, the 32 Kbyte size of the science data buffer, the round trip time limitation, and the number of pulses that the ESS can put out. To allow the best possible azimuth resolution, the duty cycle is reduced to allow a longer pulse train while still remaining below the 7% duty cycle limit. This trades SNR for resolution as was done in T19. Resolution in these segments will be in the 1 to 2 km range. For more technical details on range and doppler ambiguities, refer to the discussion in the T19 sequence design memo.

4.2 SAR-style Scatterometer Resolution Performance

Since SAR processing will be applied to this segment, the effective resolution can be calculated from the same equations,

$$\delta R_g = \frac{c}{2B_r \sin \theta_i},\tag{1}$$

$$\delta x = \frac{\lambda R}{2\tau_{rm}v\sin\theta_v},\tag{2}$$

where δR_g is the projected range resolution on the surface, c is the speed of light, B_r is the transmitted chirp bandwidth, θ_i is the incidence angle, δx is the azimuth resolution on the surface, λ is the transmitted wavelength, R is the slant range, τ_{rw} is the length of the receive window, v is the magnitude of the spacecraft velocity relative to the target body, and θ_v is the angle between the velocity vector and the look direction. Figure 2 shows the results from these equations for the scatterometer imaging time. The calculations are performed for the boresight of beam 3 which is the center of the swath.

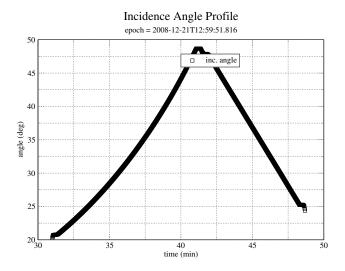


Figure 1: Incidence angle variation during Outbound Scatterometer imaging.

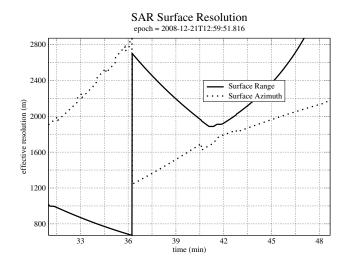


Figure 2: Outbound Scatterometer imaging projected range and azimuth resolution. These values are computed from the IEB parameters.

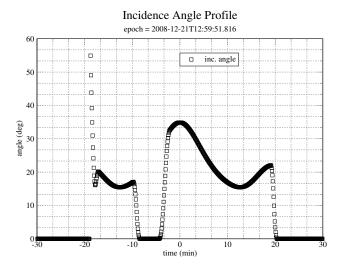


Figure 3: B3 boresight incidence angle during the time around c/a.

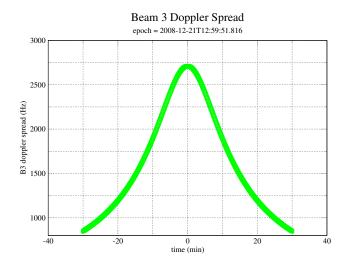


Figure 4: Nadir pointed B3 doppler spread during the time around c/a. Doppler spread is measured within the two-way 3 dB beam pattern.

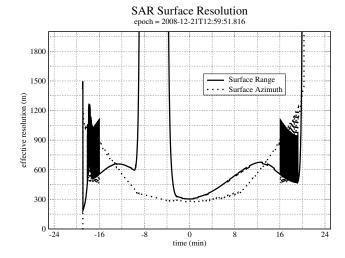


Figure 5: SAR projected range and azimuth resolution. These values are computed from the IEB parameters and are not related to the pixel size in the BIDR file. The pixel size was selected to be always smaller than the real resolution.

4.3 SAR Resolution Performance

For all of the SAR divisions the effective resolution can be calculated from the same equations used in the high-altitude imaging discussion. Figure 5 shows the results from these equations using the parameters from the IEB as generated by RMSS. The calculations are performed for the boresight of beam 3 which is the center of the swath.

Projected range increases with decreasing incidence angle, so the range resolution varies across the swath with better resolution at the outer edge. The SAR pointing profile decreases the incidence angle as time progresses and altitude increases, so there is progressive deterioration of range resolution away from closest approach. The projected range resolution rapidly deteriorates as the incidence angle decreases toward zero at the very beginning and end of the swath.

Azimuth resolution is a function of the synthetic aperture size which is determined by the length of the receive window in each burst (assuming the receive window is always filled with echos). Azimuth resolution deteriorates less quickly because the number of pulses and the length of the receive window are increased as altitude increases which mitigates the increasing doppler bandwidth of the beam patterns. The receive window length increases to fill the round trip time until the science data buffer is filled. At this point it is no longer possible to extend the receive window, and azimuth resolution starts to deteriorate more rapidly.

4.4 Atmospheric Probes

Atmospheric probe measurements were inserted to look for signals from precipitation above the surface. Details are provided in prior sequence memos starting with T30.

5 Revision History

1. Feb 25, 2009: Final release

6 Acronym List

ALT Altimeter - one of the radar operating modes

BAQ Block Adaptive Quantizer

CIMS Cassini Information Management System - a database of observations

Ckernel NAIF kernel file containing attitude data

DLAP Desired Look Angle Profile - spacecraft pointing profile designed for optimal SAR performance

ESS Energy Storage System - capacitor bank used by RADAR to store transmit energy

IEB Instrument Execution Block - instructions for the instrument

ISS Imaging Science Subsystem

IVD Inertial Vector Description - attitude vector data

IVP Inertial Vector Propagator - spacecraft software, part of attitude control system

INMS Inertial Neutral Mass Spectrometer - one of the instruments

NAIF Navigation and Ancillary Information Facility

ORS Optical Remote Sensing instruments

PDT Pointing Design Tool
PRI Pulse Repetition Interval
PRF Pulse Repetition Frequency

RMSS Radar Mapping Sequencing Software - produces radar IEB's

SAR Synthetic Aperture Radar - radar imaging mode

SNR Signal to Noise Ratio

SOP Science Operations Plan - detailed sequence design

SOPUD Science Operations Plan Update - phase of sequencing when SOP is updated prior to actual sequencing

SSG SubSequence Generation - spacecraft/instrument commands are produced

SPICE Spacecraft, Instrument, C-kernel handling software - supplied by NAIF to use NAIF kernel files.

TRO Transmit Receive Offset - round trip delay time in units of PRI